Abstract:
A liquid crystal display device includes a display-device substrate having a transparent electrode; an array substrate having a pixel electrode, a source line, a gate line, and a conductive line; a liquid crystal layer sandwiched between the display-device substrate and initially aligned vertically; and a controller that drives the liquid crystal layer by supplying an image signal to the source line and applying a liquid crystal driving voltage across the transparent electrode and the pixel electrode in synchronization with the image signal, the controller applying a voltage to the conductive line after the liquid crystal driving voltage is applied to the pixel electrode and while the liquid crystal driving voltage is not applied to the pixel electrode, thereby generating an electric field oriented in a direction intersecting the source line in a plan view between the conductive lines.
Abstract:
A liquid crystal display device with a surface of a first transparent substrate, the surface of the substrate facing a liquid crystal layer, a plurality of light absorptive resin layer patterns, a plurality of metal layer patterns, a transparent resin layer, and a plurality of transparent electrode patterns are laminated in this order; the plurality of light absorptive resin layer patterns and the plurality of metal layer patterns have openings formed therein and formed into the same shape when viewed in a laminating direction; the plurality of metal layer patterns are arrayed in a first direction, being insulated from each other; the plurality of transparent electrode patterns are arrayed in a second direction perpendicular to the first direction, being insulated from each other; each metal layer pattern has at least one of an alloy layer mainly containing copper, and a copper layer.
Abstract:
A liquid crystal display device includes a display unit including a display substrate, an array substrate, and a liquid crystal layer. The display substrate includes a first transparent substrate, one or more light absorbing resin layers, a touch electrode layer, a transparent resin layer, and a transparent electrode layer. The light absorbing resin layer is patterned such that resin portions and an opening portion are formed. The touch electrode layer is patterned such that touch electrode portions are each extended in a first direction perpendicular to a lamination direction. The touch electrode layer and the light absorbing resin layer have a same pattern such that the touch electrode portions and the resin portions overlap with one another when viewed in the lamination direction. The transparent electrode layer is patterned such that transparent electrode portions are each extended in a second direction perpendicular to the lamination direction and the first direction.
Abstract:
In a liquid crystal display substrate, the array substrate includes a comb-shaped first and second electrodes. The counter substrate faces the array substrate via a liquid crystal layer and includes a comb-shaped third electrode. In a cross-section perpendicular to the first through third longitudinal directions, comb teeth of the first and second electrodes have a positional relationship in which one is shifted from the other in a first horizontal direction. Comb teeth of the first and third electrodes have a positional relationship in which one is shifted from the other in a second horizontal direction which is opposite to the first horizontal direction.