Abstract:
Systems, methods, and devices are disclosed for implementing photonic links. Methods include transmitting light using an optical emitter, splitting, using an input coupler, the light into a first path and a second path, the first path being provided to a modulator, and the second path being provided to a phase shifter, and combining, using an output coupler, an output of the modulator and an output of the phase shifter. Methods further include identifying a modulator phase angle that reduces a third order distortion at an output of the output coupler, applying a first bias voltage to a modulator to maintain the identified modulator phase angle, and applying a control signal to the phase shifter to maintain a phase difference between an output of the modulator and an output of a phase shifter.
Abstract:
An optical waveguide structure comprises a nonlinear optical waveguide comprising a set of segments, a set of extension optical waveguides, and a set of wavelength selective couplers that couples light between set of segments in the nonlinear optical waveguide and the set of extension optical waveguides based on a wavelength of light.
Abstract:
An optical waveguide structure comprises a nonlinear optical waveguide, a set of tuning optical waveguides, a set of wavelength selective couplers that couples light between the nonlinear optical waveguide and one or more tuning optical waveguides in the set of tuning optical waveguide based on a wavelength of light, and a set of phase shifters located along one or more tuning optical waveguides in the set of tuning optical waveguides.
Abstract:
A method, apparatus, and system for forming a semiconductor structure. A first oxide layer located on a set of group III nitride layers formed on a silicon carbide substrate is bonded to a second oxide layer located on a carrier substrate to form an oxide layer located between the carrier substrate and the set of group III nitride layers. The silicon carbide substrate has a doped layer. The silicon carbide substrate having the doped layer is etched using a photo-electrochemical etching process, wherein a doping level of the doped layer is such that the doped layer is removed and a silicon carbide layer in the silicon carbide substrate remains unetched. The semiconductor structure is formed using the silicon carbide layer and the set of group III nitride layers.
Abstract:
An optical waveguide structure comprises a nonlinear optical waveguide comprising a nonlinear optical material having a second order nonlinear coefficient that changes with a direction of light propagation. A first portion of the nonlinear optical waveguide in which a light propagating through the first portion is affected by a positive value of a second order nonlinear coefficient. A second portion of the nonlinear optical waveguide in which the light propagating through the first portion is affected by a negative value of a second order nonlinear coefficient, wherein a set of dimensions in the nonlinear optical waveguide in the first portion and the second portion is selected to cause the light to have a phase walk-off that is an odd multiple of 180 degrees.
Abstract:
An optical waveguide structure comprises a first coupler and a second coupler that, in combination, direct a first-wavelength light to travel through a nonlinear-optical waveguide, the two couplers and an extension waveguide but not a secondary waveguide, a first resonator loop is defined for which the first-wavelength light is resonant. The two couplers, in combination, also direct a second-wavelength light to travel through the nonlinear-optical waveguide, the two couplers and the secondary waveguide but not the extension waveguide, wherein a different second resonator loop is defined for which the second-wavelength light is resonant.
Abstract:
Optical angle of arrival sensors and methods for determining an angle of arrival of incident light are provided, wherein one sensor includes a focusing lens and an array of lateral-effect position sensing detector (LEPSD) elements. The focusing lens is configured to focus light on the array, wherein each of the LEPSD elements includes an absorber region that absorbs light of a first wavelength range that is focused on the LEPSD elements. Each of the LEPSD elements further includes at least one lateral current conducting layer that has a relatively low sheet resistance.
Abstract:
A semiconductor structure comprises a substrate; an oxide layer on the substrate; a set of group III nitride layers on the oxide layer; and a set of silicon carbide layers located on the set of group III nitride layers.
Abstract:
An optical waveguide structure comprising a nonlinear optical waveguide, a central region, a first side region, and a second side region. The central region is located within the nonlinear optical waveguide, wherein the central region comprises a nonlinear optical material. The first side region is on a first side of the central region and the second side region is on a second side of the central region. The nonlinear optical material comprising the central region has a first nonlinear coefficient that is larger than a second nonlinear coefficient of a second material comprising the first side region and the second side region.
Abstract:
An optical waveguide structure comprising a nonlinear optical waveguide, a central region, a first side region, and a second side region. The central region is located within the nonlinear optical waveguide, wherein the central region comprises a nonlinear optical material. The first side region is on a first side of the central region and the second side region is on a second side of the central region. The nonlinear optical material comprising the central region has a first nonlinear coefficient that is larger than a second nonlinear coefficient of a second material comprising the first side region and the second side region.