Abstract:
Apparatus and methods are provided for editing color profiles. In particular, an output color including a first hue, a first lightness and a first chroma is received, and a first range of lightness values and a first range of chroma values for all output color values in the color profile are determined. A second range of lightness values of output color values in the color profile that have the first hue and the first chroma, and a second range of chroma values of output color values in the color profile that have the first hue and the first lightness are determined. Graphical representations of the first and second ranges of lightness values, and the first and second ranges of chroma values are distinctly displayed on a display device. A user interface is provided that allows a user to create an edited output color including a second hue, a second lightness and a second chroma, and dynamically modify the second range of lightness values and the second range of chroma values based on the edited output color.
Abstract:
Methods and systems for compression of digital images (still or motion sequences) are provided wherein predetermined criteria may be used to identify a plurality of areas of interest in the image, and each area of interest is encoded with a corresponding quality level (Q-factor). In particular, the predetermined criteria may be derived from measurements of where a viewing audience is focusing their gaze (area of interest). In addition, the predetermined criteria may be used to create areas of interest in an image in order to focus an observer's attention to that area. Portions of the image outside of the areas of interest are encoded at a lower quality factor and bit rate. The result is higher compression ratios without adversely affecting a viewer's perception of the overall quality of the image.
Abstract:
Apparatus and methods are provided for editing color profiles. In particular, apparatus and methods in accordance with this invention receive an output color including a first hue, identify from the color profile a plurality of output color values that have a hue substantially equal to the first hue, provide a user interface that allows a user to create an edited output color including a second hue, and shift the hue of the identified plurality of output color values from the first hue to the second hue.
Abstract:
Registration of an image with respect to a recording medium in a film recorder or the like is provided by first roughly positioning the recording medium in a support. A beam is then scanned across an unused portion of the recording medium until it impinges a fixed reference mark such as a sprocket hole edge. The coordinates of the beam are determined at the reference mark, and a registration signal is computed therefrom. The beam is then scanned across the recording medium in response to the registration signal to record information in registered relation to the reference mark. An intensity profile of the beam is calculated as it passes over an edge of the recording medium. The focus of the beam is then adjusted according to the intensity profile. Adjustment of both beam focus and lens focus is provided.
Abstract:
Apparatus and methods are provided for editing color profiles. In particular, input data (such as reference image data) are received, and then are converted to first output data using a first color profile and to second output data using a second color profile, wherein the second color profile is an edited version of the first color profile. Soft proof data corresponding to the input data, first output data and second output data are calculated and then displayed on a display device. The soft proof data corresponding to the input data, first output data and second output data may be simultaneously or selectively displayed on the display device.
Abstract:
Methods and apparatus are provided for securely transmitting and processing digital image data for display. The invention provides for decomposing, compressing, and scrambling digital image data and forwarding the decomposed, compressed and scrambled image data to a destination where the image data is decompressed, re-composed, and descrambled prior to display. In particular, digital image data is scrambled before or after being compressed and is subsequently descrambled after being decompressed and prior to display such that unauthorized use of the image content is prevented. The invention can be used in conjunction with most standard block-based image compression algorithms such as JPEG as well as some types of wavelet transform based systems.
Abstract:
An imaging system such as an image recorder or scanner is provided with a rearview cathode ray tube. A transparent viewport of optical quality is provided along an optical axis of the CRT which is perpendicular to the CRT faceplate and generally centered with respect to the image area. The electron beam used for scanning the images is placed off-axis with respect to the CRT screen. A deflection control system compensates for spherical distortion and for the keystone effect that results from the off-axis placement of the electron gun. The structure of the present invention eliminates halation, thereby improving the dynamic range and contrast achievable for imaging and/or scanning purposes. The phosphor layer used in the CRT is made substantially thicker than in conventional CRTs, thereby reducing blemishes and improving uniformity, resolution and light output. The partial sharing of electron beam and optical paths enables more compact imaging and scanning systems to be provided.
Abstract:
An image recorder for providing a CRT image and apparatus to store the image on a film disposed on a film plane. The relative position, intensity and focus parameters of the image are measured during an initial startup of the image recorder, wherein the position, intensity and focus parameters of the CRT and the image thereon are automatically aligned to assure enhanced performance. The apparatus according to the present invention provides an alignment mask disposed in the CRT plane and the CRT parameters are measured by observation of the light collected through the alignment mask from the CRT and processing the corresopnding light intensity signals. The light sensing device provides a signal which is processed typically by a microprocessor controlled geometry engine to derive a set of correction data which is based on a prototype array of initialized data values. The correction data provide signals which are combined with uncorrected CRT deflection signals to provide a corrected signal. The parameters corrected by the apparatus and method according to the present invention include x and y position, focus and relative picture intensity over the surface of the screen (vignette). The above-listed parameters are used alone and in combination to provide image centering, image scaling and pincushion correction, correction for non-orthogonality between the x and y deflection coils, image rotation and correction for non-linear second and third order effects. The set of data can also be deliberately distorted to provide image precompensation such as keystone (trapezoid) and spherical corrections as well as vignette compensation such that, when the final image is projected or displayed, a true (nondistorted) image results.