Abstract:
A manufacturing method of a circuit substrate includes the following steps. The peripheries of two metal layers are bonded to form a sealed area. At least a through hole passing through the sealed area is formed. Two insulating layers are formed on the two metal layers. Two conductive layers are formed on the two insulating layers. The two insulating layers and the two conductive layers are laminated to the two metal layers bonded to each other, wherein the metal layers are embedded between the two insulating layers, and the two insulating layers fill into the through hole. The sealed area of the two metal layers is separated to form two separated circuit substrates. Therefore, the thinner substrate can be operated in the following steps, such as patterning process or plating process. In addition, the method may be extended to manufacture the circuit substrate with odd-numbered layer or even-numbered layer.
Abstract:
A packaging process is provided. A package mother board having an upper surface, a lower surface, a device disposing area and a peripheral area surrounding the device disposing area is provided. Multiple semiconductor devices are disposed on the upper surface. The semiconductor devices are located in the device disposing area. A carrier having a center area and an edge area surrounding the center area is provided. An adhesive layer is formed between the peripheral area and the edge area. The center area of the carrier is disposed corresponding to the device disposing area of the package mother board. The edge area of the carrier is disposed corresponding to the peripheral area of the package mother board. The adhesive layer is in a state of semi-curing, and the package mother board is bonded to the carrier via the adhesive layer. A baking process is performed to completely cure the adhesive layer.
Abstract:
A manufacturing method of substrate structure is provided. The base material having a core layer and a first and second copper foil layers located at a first and second surfaces of the core layer is provided. A surface treatment is performed on the first and second copper foil layers so as to form a first and second roughened surfaces. A laser beam is irradiated on the first roughened surface so as to form at least one first blind hole extending from the first copper foil layer to the second surface. An etching process is performed on the second copper foil layer so as to form at least one second blind hole extending from the second copper foil layer to the second surface. A conductive layer fills up a through hole defined by the first and second blind holes and covers the first and second copper foil layers.
Abstract:
A manufacturing method of package carrier is provided. A first copper foil layer, a second copper foil layer on the first foil layer, a third copper foil layer and a fourth foil layer on the third foil layer are provided. The second copper foil layer is partially bonded the fourth copper foil layer by an adhesive gel so as to form a substrate of which the peripheral region is glued and the effective region is not glued. Therefore, the thinner substrate can be used in the following steps, such as patterning process or plating process. In addition, the substrate can be extended be the package carrier structure with odd-numbered layer or even-numbered layer.
Abstract:
A brainwave control system and method operable through time differential event-related potential includes a brainwave capturing unit attached to a user's head, a brainwave signal processing apparatus and a display unit to display at least two sets of stimuli. The brainwave signal processing apparatus includes a signal processor connected to the brainwave capturing unit and a central processor. The signal processor converts brainwave signals generated by the user after having received a set of short time interval stimuli to digital signals. The central processor performs analysis and generates identification results and executes control commands accordingly. Thus user can rapidly and accurately execute his requirements of operation control so as to achieve non-contact operation control with improved usability and practicality.
Abstract:
The invention provides a camera module and a method for fabricating the same. A camera module includes an image sensor device chip having a plurality of solder balls on a bottom surface thereof. An optical lens is disposed on the image sensor device chip. A metal plate has a part that extending over the bottom surface of the image sensor device. A metal coating layer surrounds vertical surfaces of the optical lens and a top surface of the part of the metal plate. A first light shielding layer covers vertical surfaces of the metal coating layer.