Abstract:
The invention relates to a high-pressure fuel pump comprising a drive shaft supported by bearings, and fuel flows through the bearings in a forced manner in such a way that the mechanical and thermal load-carrying capacity of the bearings, and thus the entire high-pressure fuel pump, is significantly increased.
Abstract:
The invention relates to a tappet assembly for a high-pressure pump, especially for the prose of fuel supply, and to a high-pressure pump including such a tappet assembly. The tappet assembly has a hollow cylindrical tappet base into which a roller support is inserted in the direction of the longitudinal axis of the tappet base. A roller is rotatably received in the roller support. The roller support is arranged at a right angle to the rotational axis of the roller with little or no play in the tappet base and in the direction of the rotational axis of the roller with larger play than at a right angle to the rotational axis of the roller in the tappet base. As a result, the roller support can perform a limited tilting motion in the tappet base, thereby allowing the rotational axis of the roller to be aligned in relation to the rotational axis of a driving shaft driving the tappet assembly in a lifting motion and avoiding edge loading of the roller on a cam or avoiding the need for eccentrics on the driving shaft.
Abstract:
The high-pressure pump has at least one pump element which has a pump plunger which is driven in a reciprocating motion and defines a pump working space into which fuel is drawn in from a fuel feed via an inlet valve during the suction stroke of the pump plunger and from which fuel is displaced into a high-pressure region via an outlet valve during the delivery stroke of the pump plunger. The inlet valve and/or the outlet valve has a valve member at least approximately in the shape of a ball which interacts by means of a sealing surface with a valve seat arranged in a valve housing. By means of the valve member, in the open state, when said valve member is lifted with its sealing surface from the valve seat, a first cross section of flow is cleared between the valve member and the valve seat, and downstream of the first cross section of flow, a second cross section of flow is formed between the valve member and the valve housing. In the direction of flow between the first cross section of flow and the second cross section of flow, a third cross section of flow is formed between the valve member and the valve housing, said third cross section of flow being larger than the first cross section of flow and the second cross section of flow.
Abstract:
A pump unit for the metered delivery of fuel to internal combustion engines. The pump unit comprises a housing which comprises a longitudinal bore. Located in the longitudinal bore is an overflow valve, via which fuel flows back through a channel into a fuel tank. The passage can be opened or closed by a spring-loaded closing element. Fastened to the valve shaft of the overflow valve is a ring fitting. In the longitudinal bore of the housing there is an additional thread section, via which air flows out through vent gaps into a cavity of the ring fitting.
Abstract:
A tool for isothermal forging is disclosed. The tool consists of two die halves, at least one of which consists of an assembly of individual components whose side facing the workpiece is provided with a thin electrically insulating layer. The assembly of the die half from individual components occurs following forming of the components by casting and/or forging, and machining of the formed components. The forming of the die halves from separate components makes it possible to adapt the components of the die half to the particular working conditions in an optimum manner. The provision of an insulating layer on the individual components reduces the risk of local welding and nonuniform temperature distribution during inductive heating.
Abstract:
A high-pressure pump (1), which serves in particular as a radial or inline piston pump for fuel injection systems of air-compressing, auto-ignition internal combustion engines, comprises a cylinder head (2) and a pump assembly (6). Here, the cylinder head (2) has a cylinder bore (4) in which a pump piston (5) of the pump assembly (6) is guided. Here, the pump piston (5) delimits, in the cylinder bore (4), a pump working chamber (12). Also provided is an inlet valve (20) which is integrated into the cylinder head (2) and via which fuel can be conducted into the pump working chamber (12). Metering of the fuel conducted into the pump working chamber (12) can be achieved by actuation of the inlet valve (20). Here, full charging of the pump working chamber (12) may take place. It is however also possible for partial charging of the pump working chamber (12) to be achieved by means of suitable actuation of the inlet valve (20).
Abstract:
A valve having a valve member, which cooperates with a valve seat formed in a housing part in order to control a connection, and the valve seat has an at least approximately conical seat face, which is located at a transition of the connection from a portion of small diameter to a portion of large diameter. The seat face is adjoined, on its side oriented toward the portion of large diameter, by at least one face which is more markedly inclined relative to the longitudinal axis of the connection than the seat face, and on its side oriented toward the portion of small diameter, the seat face is adjoined by at least one face which is less markedly inclined relative to the longitudinal axis of the connection than the seat face.
Abstract:
A pump unit for the metered delivery of fuel to internal combustion engines. The pump unit comprises a housing which comprises a longitudinal bore. Located in the longitudinal bore is an overflow valve, via which fuel flows back through a channel into a fuel tank. The passage can be opened or closed by a spring-loaded closing element. Fastened to the valve shaft of the overflow valve is a ring fitting. In the longitudinal bore of the housing there is an additional thread section, via which air flows out through vent gaps into a cavity of the ring fitting.
Abstract:
A fuel injection pump having a cam drive and an injection adjuster piston, acting on the cam drive and serving the purpose of an injection onset adjustment. The injection adjuster piston on a face end encloses at least one pressure chamber that via a control valve is either made to communicate with a pressure source or a relief line or can be closed entirely. The control valve is actuated by an a proportional electromagnet. As a result, only a little adjusting medium is required, to obtain a high efficiency of the injection onset adjustment, and advantageously the injection adjuster piston is stressed only axially, and frictional forces on the circumference of the injection adjuster piston are thus avoided.
Abstract:
The invention relates to a pressure valve for installation in a supply line between a pump work chamber of a fuel injection pump and an injection site in an internal combustion engine to be supplied thereby. A valve body is provided with a valve seat and has a through conduit in which a pressure valve closing member is guided. A check valve is disposed in a work chamber, wherein the check valve and the pressure valve closing member are movable relative to one another, in the through conduit. A restoring spring on the injection side causes the check valve to rest in the through bore and on the pump chamber side disposes the pressure valve closing member to the valve seat of the valve body.