Abstract:
The present teachings include a process, system and article for forming a printed image on a textile. The process includes coating the solution of an orthosilicate to form a silica network on the textile. The process includes applying an ink composition to the textile having the silica network on the textile, forming an image.
Abstract:
A solid blanket receives a flood layer of very thin (e.g., about 10 μm or less) image receiving UV curable coating, which may be a clear, substantially clear, or tinted UV ink. A lower viscosity digital ink image may then be printed on top of the flood layer, for example by jetting UV ink on top of the flood layer. The lower viscosity UV digital ink sits on top of the thicker UV curable coating and maintains its location by surface tension interaction with the coating. The combination of ink and coating is then partially cured to a tacky state at which point it is transferred to print media via a conformable pressure nip. Since the lower viscosity jetted inks are not responsible for directly wetting the media, media latitude widens greatly. Further, no dampening fluid or fountain solution is needed to aid the transfer or the imaging.
Abstract:
A process including providing a substantially flat printed image on a substrate; disposing a curable gellant composition onto the printed image in registration with the printed image, successively depositing additional amounts of the gellant composition to create a raised image in registration with the printed image; and curing the deposited raised image. A process including providing a printed image on a substrate; disposing a curable non-gellant composition onto the printed image in registration with the printed image; and disposing a curable gellant composition onto the printed image in registration with the printed image; to create a raised image in registration with the printed image; and curing the deposited raised image. An ultraviolet curable phase change gellant composition including a radiation curable monomer or prepolymer, a photoinitiator, a silicone polymer or pre-polymer, and a gellant.
Abstract:
A method for evaluating curing in an ink composition comprises depositing an ink composition on the surface of an object via a direct-to-object inkjet printing system to form a film thereon, the ink composition comprising a photoinitiator capable of initiating a free radical polymerization process in the ink composition upon the absorption of light to cure the deposited film; exposing, in-situ, the deposited film to light generated by a first source of light under conditions which initiate the free radical polymerization process to cure the deposited film; exposing, in-situ, the cured film to light generated by a second source of light under conditions which induce light absorption by unreacted photoinitiator in the cured film; measuring the absorbance of the cured film; and determining a degree of cure in the cured film from the measured absorbance and predetermined calibration data.
Abstract:
A method of manufacturing a three-dimensional object compensates for different rates of shrinkage during curing of dissimilar materials. The compensation is achieved by ejecting the different materials with reference to the shrinkage rates of the materials to enable the materials to be at approximately a same height following curing of the materials.
Abstract:
A surface treatment system includes a holder configured to secure an object within the holder and a plurality of surface treatment devices. Each surface treatment device is configured to treat a surface of the object within the holder differently than each of the other surface treatment devices in the plurality of surface treatment devices. A controller is configured to operate the surface treatment devices independently of one another so less than all of the devices can be operated to treat an object surface. Thus, the surface treatment system is capable of treating a wide range of materials for printing by a direct-to-object printer.
Abstract:
A system for printing on a multi-dimensional object includes a plurality of print heads, and a printing chase configured to receive an object holder for an object and provide accurate registration of the object. The system further includes an actuator configured to move the printing chase relative to the print heads. The system is configured to receive information corresponding to an object holder mounted on the printing chase, determine a position of at least one printable area using the retrieved information, receive information relating to print data to be printed on the at least one printable area, use the determined position of the at least one printable area to control a movement of the printing chase relative to the print heads, and operate the print heads to eject marking material onto the at least one printable area to print data on the at least one printable area.
Abstract:
A printer includes an ultraviolet (UV) curing device having UV light emitting diodes (LEDs) to cure UV curable inks ejected onto a surface after the surface travels past a plurality of printheads in the printer. A UV detector having UV sensors is positioned opposite the UV curing device so the UV sensors and UV LEDs are opposite one another in a one-to-one correspondence. A controller operates the UV curing device to direct UV light into the UV detector and receives electrical signals generated by the UV sensors. The controller compares these electrical signals to a predetermined threshold to identify defective LEDs in the UV curing device. The controller then determines how to move the UV curing device across the path of the surface to irradiate areas of the surface previously opposite the defective UV LEDs.
Abstract:
A functional amine release agent displaying reduced coefficient of friction as compared to standard silicone oils, the release agent comprising a polydimethylsiloxane oil and a functional amine selected from the group consisting of pendant propylamines and pendant N-(2-aminoethyl)-3-aminopropyl; wherein the concentration of functional amine to polydimethylsiloxane oil is approximately less than 0.0006 meq/g. According to certain embodiments, the functional amine release agent is operable to impart a coefficient of friction of about 0.3 or more to the print media, resulting in improved finishing and converting equipment interaction.
Abstract:
A functional amine release agent displaying reduced coefficient of friction as compared to standard silicone oils, the release agent comprising a polydimethylsiloxane oil and a functional amine selected from the group consisting of pendant propylamines and pendant N-(2-aminoethyl)-3-aminopropyl; wherein the concentration of functional amine to polydimethylsiloxane oil is approximately less than 0.0006 meq/g. According to certain embodiments, the functional amine release agent is operable to impart a coefficient of friction of about 0.3 or more to the print media, resulting in improved finishing and converting equipment interaction.