Abstract:
What is disclosed is a system and method for selecting a region of interest for extracting physiological parameters from a video of a subject. In one embodiment the present method involves performing the following. First, time-series signals are received which have been generated by having processing image frames of a video of a subject captured using a single band video camera with a bandpass filter with a pass band in a wavelength range of 495-565 nm and/or 800-1000 nm. The regions of interest are areas where a plethysmographic signal can be detected by the camera. Each time-series signal is associated with a different region of interest. A signal strength is then calculated for each of the time-series signals. The region associated with the time-series signal having a highest signal strength is selected. The time-series signal associated with the selected region can be processed to extract a videoplethysmographic (VPG) signal containing physiological parameters.
Abstract:
What is disclosed is a system and method for compensating for motion during processing of a video of a subject being monitored for physiological function assessment. In one embodiment, image frames are received. Successive batches of N video frames are processed to isolate pixels associated with a body region of the subject where a physiological signal is registered by the camera. The pixels are processed to obtain a time-series signal for each batch. A determination is made whether movement during video acquisition of this batch of image frames exceeds a threshold level. If so then a size N of the next batch of image frames is changed to: N=N+M1, where N+M1≦Nm. Otherwise, a size N of a next batch is changed to: N=N−M2, where N−M2≧Nmin. Thereafter, processing repeats in a real-time continuous manner as the next batch of the N image frames is received. Various embodiments are disclosed.
Abstract:
What is disclosed is a system and method for determining the time it takes for an arterial pulse pressure wave to transit between a proximal and a distal point of a patient's body. In one embodiment, a signal is received from each of a first and second device worn circumferentially around a proximal and a distal region, respectively. The devices are worn on an area of exposed skin. Each of the devices comprises at least one emitter/detector pair fixed to an inner side of each device and has at least one detector paired to at least one illuminator. Each detector has at least one sensor that is sensitive to a wavelength band of light emitted by its illuminator. Each device generates signals that are proportional to an intensity of light emitted by an illuminator. The signals are analyzed to determine arterial pulse wave transit time between the proximal and distal regions.
Abstract:
What is disclosed is a method for monitoring a subject for cardiac arrhythmia such as atrial fibrillation using an apparatus that can be comfortably worn by the subject around an area of exposed skin where a photoplethysmographic (PPG) signal can be registered. In one embodiment, the apparatus is a reflective or transmissive wrist-worn device with emitter/detector pairs fixed to an inner side of a band with at least one illuminator emitting source light at a specified wavelength band. The illuminator is paired to a respective photodetector comprising one or more sensors that are sensitive to a wavelength band of its paired illuminator. The photodetector measures intensity of sensed light emitted by a respective illuminator. The signal obtained by the sensors comprises a continuous PPG signal. The continuous PPG signal analyzed for peak-to-peak pulse points from which the existence of cardiac arrhythmia such as atrial fibrillation event can be determined.
Abstract:
What is disclosed is a system for compensating for motion induced artifacts in a physiological signal obtained from multiple videos of a first and second region of interest a subject being monitored for a desired physiological function. At least one of the videos being of the first region and at least one of the videos being of the second region. The first region being at least one area of exposed skin where a desired signal corresponding to the physiological function can be registered by a video imaging device. The second region being an area where a movement by the subject is likely to induce motion artifacts into the signal. The videos are processed to isolate pixels associated with the first and second regions. Processed pixels of the isolated first regions to obtain a composite time-series signal. From the composite signal, a physiological signal corresponding to the physiological function is extracted.
Abstract:
What is disclosed is a system and method for compensating for motion induce artifacts in a physiological signal obtained from a video. In one embodiment, a video of a first and second region of interest of a subject being monitored for a desired physiological function is captured by a video device. The first region is an area of exposed skin wherein a desired signal corresponding to the physiological function can be registered. The second region is an area where movement is likely to induce motion artifacts into that signal. The video is processed to isolate pixels in the image frames associated with these regions. Pixels of the first region are processed to obtain a time-series signal. A physiological signal is extracted from the time-series signal. Pixels of the second region are analyzed to identify motion. The physiological signal is processed to compensate for the identified motion.
Abstract:
What is disclosed is a novel video processing system and method wherein a plurality of image frames of a video captured using a video camera with a spatial resolution of (M×N) in the (x, y) direction, respectively, and a temporal resolution (T) in frames per unit of time. A first and second magnification factor f1, f2 are selected for spatial enhancement in the (x, y) direction. A third magnification factor f3 is selected for a desired temporal enhancement in (T). The video data is processed using a dictionary comprising high and low resolution patch cubes which are used to induce spatial and temporal components in the video where no data exists. A high resolution course video X0 is generated which has an enhanced spatial resolution of (f1* M)×(f2*N) and an enhanced temporal resolution of (f3*T) frames. The course high resolution video is then smoothed, when found required, to generate a smoothed high resolution video.
Abstract:
What is disclosed is a system and method for determining arterial pulse wave transit time for a subject. In one embodiment, a video is received comprising a plurality of time-sequential image frames of a region of exposed skin of a subject where a videoplethysmographic (VPG) signal can be registered by at least one imaging channel of the video device used to capture that video. Also received is an electrocardiogram (ECG) signal obtained using at least one sensor placed on the subject's body where a ECG signal can be obtained. Batches of image frames are processed to obtain a continuous VPG signal for the subject. Temporally overlapping VPG and ECG signals are analyzed to obtain a pulse wave transit time between a reference point on the VPG signal and a reference point on the ECG signal. The pulse transit time is used to assess pathologic conditions such as peripheral vascular disease.
Abstract:
What is disclosed is a system and method for determining whether a subject is in atrial fibrillation. A video is received of a region of exposed skin of a subject. The video is acquired of a region where a videoplethysmographic (VPG) signal can be registered by at least one imaging channel of a video imaging device. For each batch of image frames, pixels associated with the region of exposed skin are isolated and processed to obtain a time-series signal. A VPG signal is extracted from the time-series signal. The power spectral density (PSD) is computed across all frequencies within the VPG signal. A pulse harmonic strength (PHS) is calculated for this VPG signal. The pulse harmonic strength is compared to a discrimination threshold, defined herein. A determination is made whether the subject in the video is in atrial fibrillation or in normal sinus rhythm.
Abstract:
What is disclosed is a system and method for processing a video for respiratory function analysis. In one embodiment, a video is received of a region of the subject's body where a time-varying signal corresponding to the subject's respiration can be registered by the video camera. Pixels in a first batch of frames are processed to obtain a time-series signal which is filtered using a band-pass filter with a low and high cutoff frequency fL and fH, where fL and fH are a function of the subject's tidal breathing. The filtered time-series signal is analyzed to identify a next low and high cutoff frequency f′L and F′H, where fL