Abstract:
A holographic optical device includes a light-transmissive substrate, a first holographic optical element, and a second holographic optical element that is laterally disposed on the substrate from the first holographic optical element. At least one of the holographic optical elements is a complex diffraction grating that can handle a multiplicity of plane and/or spherical waves arriving from a range of angles, and having a range of wavelengths. Applications for the device include a wavelength division multiplexer/demultiplexer, an image reconstructor, a beam expander/compressor, and a visor/head-up display.
Abstract:
An optical system is disclosed which focuses a polychromatic source to an extended focal pencil. The implementation makes use of two holographic optical elements (HOEs) fabricated and aligned to form a deliberate longitudinal color dispersion, but to alleviate lateral chromatic effects. Consequently, the HOE doublet focuses different wavelengths of the source to different locations along the optical axis. The strong intensity of the focused wavelengths dominate at each location, so that the overall beam has a near-diffraction-limited 1/e.sup.2 spot size and suffers only relatively weak background illumination. An alternative optical system using bulk lenses and several possible applications for the device are also described.
Abstract:
An optical device including a light waves-transmitting substrate having two major surfaces and edges, has optical means for coupling light into the substrate by total internal reflection, and a plurality of partially reflecting surfaces (22a, 22b) carried by the substrate. The partially reflecting surfaces (22a, 22b) are parallel to each other and are not parallel to any of the edges of the substrate. One or more of the partially reflecting surfaces (22a, 22b) is an anisotropic surface.
Abstract:
There is provided an optical system, including a substrate having a major surface and edges, an optical element for coupling light into the substrate by total internal reflection, a reflecting surface carried by the substrate, a retardation plate and a reflecting optical element. The retardation plate is located between a portion of the major surface of the substrate and the reflecting optical element.
Abstract:
There is provided an optical device, comprising a display source; a light-diffuser; an imaging optical module, and an output aperture from the optical device characterized in that the light diffuser is an angular, non-uniform diffuser of light for increasing a portion of light emerging from the display source that passes through the output aperture. A method for improving the brightness of an optical display is also provided.
Abstract:
There is provided an optical device, having a light-transmitting substrate (20) having at least two major surfaces parallel to each other and edges; a display light source; optical means for coupling light from the light source into the substrate (20) by internal reflection, and at least one partially reflecting surface (22) located in the substrate (20) which is non-parallel to the major surfaces of the substrate wherein the source emits light waves located in a given field-of-view, that the light waves are collimated, that an angular resolution is defined for the optical device, and wherein the angular deviation between any two different rays located in one of the collimated light waves, is smaller than the angular resolution.
Abstract:
There is provided an optical device, including a light-transmitting substrate (20) having an input aperture and first and second major surfaces (26, 32) parallel to each other and edges, one partially reflecting surface located in the substrate which is non-parallel to the major surfaces of the substrate and an optical arrangement having an output aperture for coupling light into the substrate by total internal reflection. The optical arrangement for coupling light is located outside of the substrate, the output aperture is optically attached to the input aperture of the substrate and the part of the substrate located next to the substrate input aperture, is substantially transparent.
Abstract:
There is provided an optical device, composed of a display source (4), an imaging optical module (8), a projection module (12) having a projection mechanism including an input aperture (10) and output aperture (14) defined by a surface area, and an exit pupil (16). The projection mechanism is non-uniform over the area of the output aperture (14).
Abstract:
There is provided an optical device, comprising a display source; a light-diffuser; an imaging optical module, and an output aperture from the optical device characterized in that the light diffuser is an angular, non-uniform diffuser of light for increasing a portion of light emerging from the display source that passes through the output aperture. A method for improving the brightness of an optical display is also provided.
Abstract:
A planar optical crossbar switch comprising two thin planar substrates, on each of which are recorded or attached two holographic lenses between which light propagates by means of total internal reflection. The first lens is a negative cylindrical lens, used to input the incident light signal to the substrate, and the second lens is a positive cylindrical lens. The two substrates are disposed at right angles to each other in such a way that the positive lenses are positioned one on top of the other with a spatial light modulator sandwiched between them or beneath them. A linear array of detectors collects the output signal from the negative lens on the second substrate. Light from an element in the linear array of sources is spread out, by means of the negative cylindrical holographic lens on the first substrate, across a row of the SLM, and light from a column of the SLM is focused by means of the cylindrical holographic lenses on the second substrate, onto a particular element of the linear array of output detectors. To connect a signal form the ith source in the input array to the jth detector in the output array, the value of the {i,j} pixel of the SLM matrix should be in the ON state.