Abstract:
In various embodiments, a high-pressure discharge lamp including a starting aid and a longitudinal axis having a ceramic discharge vessel that is housed in an outer bulb, the discharge vessel having two ends having including capillaries with electrodes fastened therein, wherein a frame having a hanger wire holds the discharge vessel in the outer bulb and the hanger wire is configured so that it includes a plate-like starting aid toward the capillary of the opposite-pole electrode, with the plate-like starting aid being configured as a foil or metal sheet and the plate-like starting aid further including a means for purely mechanical fastening to at least the capillary.
Abstract:
Various embodiments relate to a projection device for projecting useful data onto a projection surface. In this case, a first laser device generates radiation having a first wavelength and a second laser device generates radiation having a second wavelength. The spots of the respective beams are detected by a sensor device and fed to a drive device for the laser devices. Said drive device temporally shifts the drive signals relative to one another in such a way that a horizontal distance between the spots is minimized. Various embodiments furthermore relate to a corresponding method for projecting useful data.
Abstract:
An incandescent halogen lamp for vehicle headlights may include a lamp base which defines a reference plane for orienting the incandescent halogen lamp in the vehicle headlight and includes a holder part having a substantially rotationally symmetrical external contour for holding a translucent lamp vessel, with the holder part having a first holder-part section connected to a component of the lamp base and a second holder-part section from which the translucent lamp vessel projects, wherein the second holder-part section has a smaller external diameter than the first holder-part section and wherein the height of the lamp base above the reference plane is in the 11.5-to-16.6-mm range.
Abstract:
Proposed is a circuit for driving a fluorescent lamp and a light-emitting diode. The circuit may include an inverter; a fluorescent lamp driving branch for driving a fluorescent lamp; a light-emitting diode driving branch for driving a light-emitting diode; a starting branch; and an alternate control branch. By using a simple circuit structure, various embodiments may realize a circuit capable of conveniently and alternately driving a fluorescent lamp and a light-emitting diode.
Abstract:
Various embodiments provide an electronic ballast for operation of at least one discharge lamp, with the electronic ballast having an apparatus for power factor correction with a voltage converter. The voltage converter itself includes an inductance, a diode and a switch. A control apparatus, which produces a square-wave signal as a control signal to the switch of the apparatus for power factor correction, includes an I regulator. This produces a first component of the on time of the control signal. In order to react to short-term power demands in the load circuit for example on ignition of the discharge lamp, an electronic ballast furthermore may include a power determining apparatus, which is coupled to the control apparatus, with the control apparatus being designed to vary the control signal as a function of the power consumed in the discharge lamp.
Abstract:
A rod-shaped retrofit lamp may have a mechanical sensing unit, and a current path has a plurality of electrically conductive sub-segments of which a first sub-segment is connected to the associated pin and of which a sub-segment is connected to the lamp's electronics unit, wherein the mechanical sensing unit is elastically pushed in counter to its projection direction from a released condition into an engaged condition and interacting with two current paths in such a way that the respective current path's first and second sub-segment will have been galvanically mutually coupled when the sensing unit is in the engaged condition so that the respective current path will have been closed and associated pin thereby electrically connected to the internal electronics unit.
Abstract:
A lighting device may include a heat sink, which has at least one carrier attached to the outside of the heat sink for at least one semiconductor light source; a recess for accommodating a driver; and at least one electrically insulating supply, which connects the recess to the outside of the heat sink; wherein the electrically insulating supply includes a contact surface that connects to the outside of the heat sink in a flush manner, the contact surface being at least partially covered by the carrier.
Abstract:
A method for operating a gas discharge lamp featuring a gas discharge lamp burner and a first and a second electrode, wherein the electrodes have a nominal electrode separation in the gas discharge lamp burner before their first activation and said nominal separation is correlated to the lamp voltage. The method may include checking whether the off-time, corresponding to the time duration between two DC voltage phases, has expired; and if the off-time has expired, omitting commutations or applying pseudo-commutations for a predefined time duration which depends on the lamp voltage in such a way that a time duration of the omission of at least one of commutations and application of pseudo-commutations is predefined for each lamp voltage.
Abstract:
In various embodiments, a lamp is provided. The lamp may include at least one solid light source which is installed on a carrier; an at least partially light-permeable vessel, which encloses the light source and the carrier in a gas-tight manner and a filling gas, which is enclosed in the vessel, wherein the filling gas is a mixture of at least one gas having high thermal conductivity and at least one gas having a different physical property.