Abstract:
An ultrasonic aerosol apparatus having a piezoelectric element which generates ultrasonic signals in response to signals received from an oscillating circuit, where the temperature of the piezoelectric element is controlled by an electronic device such as an N.T.C. thermistor. The temperature control device senses the temperature of the piezoelectric element and controls the power fed to the oscillator circuit in accordance with the temperature of the piezoelectric element. Rather than cut power completely to the oscillator circuit (thereby interrupting the atomization process of the apparatus), the temperature control device reduces power fed to the oscillator circuit when the piezoelectric element temperature rises above a predetermined value, and increases power fed to the oscillator circuit when the piezoelectric element temperature falls below a predetermined value. Leakage of liquids (e.g., water or medication) contained within the apparatus is avoided by the lack of joints in the liquid-holding apparatus containers. The piezoelectric element may be ceramic, and may be supported by an elastic element which itself may act as an electrical connection between the piezoelectric element and the temperature control device.
Abstract:
The ultrasonic scalpel blade includes a blade having an included blade edge angle of 25.degree. and greater such that, upon application of ultrasonic power, the otherwise blunt blade has a perceived sharpness corresponding to the sharpness of manually used scalpel blades with the added advantage of improved coagulation and hemostasis. Blades are also provided with varying included angles for ultrasonically incising different tissues.
Abstract:
An ultrasonic oscillator, which can be mounted on a vehicle and which enables an oscillating element itself to generate a high ultrasonic energy, comprising a storage battery having one power line thereof grounded, a DC -- DC converter which is electrically isolated from said power lines of the storage battery and which supplies D.C. power to non-grounded power lines thereof, and a Darlington transistor circuit having a ultrasonic oscillating element connected across base and collector thereof.
Abstract:
An audible alarm device comprises solid-state amplifier drive circuit cooperating with a piezoelectric transducer to convert electrical energy into sound energy. An acoustical loading means, such as a horn, effectively transmits the sound to the air.
Abstract:
A method for operating an electrosurgical system including an ultrasound generator and an ultrasonic instrument, includes the steps: determining an initial resonant frequency of the ultrasonic instrument by the ultrasound generator, energizing the ultrasonic instrument by the ultrasound generator with an operating amplitude and an operating frequency which correspond to the initial resonant frequency, tracking the operating frequency of the ultrasound generator with changes in the resonant frequency of the ultrasonic instrument, and terminating the energizing of the ultrasonic instrument by the ultrasound generator. A method terminates the energizing of the ultrasonic instrument by the ultrasound generator, in a decay phase the operating amplitude of the ultrasound generator is reduced to zero with a predefined or predefinable rate of change. An ultrasound generator is also presented.
Abstract:
A histotripsy therapy system configured for the treatment of tissue is provided, which may include any number of features. Provided herein are systems and methods that provide efficacious non-invasive and minimally invasive therapeutic, diagnostic and research procedures. The systems and methods herein are configured to measure and display forces acting upon the therapy treatment head during a procedure. In some aspects, buoyancy forces from the acoustic coupling medium are also accounted for.