Abstract:
A tethered unmanned aerial vehicle firefighting system includes a firefighting drone, a lifting drone and a tether line coupling the firefighting drone to a control station through the lifting drone. The control station includes a control unit for controlling the firefighting drone and the lifting drone, a fire retardant supply, a pump coupled to the fire retardant supply, and a power supply. The tether line includes a power line coupling the power source to and powering the firefighting drone and a fire retardant hose coupled between the pump and a nozzle carried by the firefighting drone. A lifting tower hold the tether from the control station at a height above ground level, and the lifting drone maintains the tether above obstruction for the firefighter drone. The firefighter drone disperses fire retardant from the nozzle for firefighting purposes and with a substantially unlimited supply of retardant and power.
Abstract:
A system, apparatus, and method for the measurement, collection, and analysis of radio signals are provided. A transport host device, including an unmanned aerial vehicle, can transport a scanning device into desired locations for autonomously collecting radio data for a wireless network, thereby enabling the rapid interrogation and optimization the wireless network, including in locations and spatial areas where previously known systems and methods have been impractical or impossible.
Abstract:
Methods, systems, and apparatus, including computer programs encoded on computer storage media, for an unmanned aerial system inspection system. One of the methods is performed by a UAV and includes receiving, by the UAV, flight information describing a job to perform an inspection of a rooftop. A particular altitude is ascended to, and an inspection of the rooftop is performed including obtaining sensor information describing the rooftop. Location information identifying a damaged area of the rooftop is received. The damaged area of the rooftop is traveled to. An inspection of the damaged area of the rooftop is performed including obtaining detailed sensor information describing the damaged area. A safe landing location is traveled to.
Abstract:
Methods, systems, and apparatus, including computer programs encoded on computer storage media, for an unmanned aerial system inspection system. One of the methods is performed by a UAV and includes receiving, by the UAV, flight information describing a job to perform an inspection of a rooftop. A particular altitude is ascended to, and an inspection of the rooftop is performed including obtaining sensor information describing the rooftop. Location information identifying a damaged area of the rooftop is received. The damaged area of the rooftop is traveled to. An inspection of the damaged area of the rooftop is performed including obtaining detailed sensor information describing the damaged area. A safe landing location is traveled to.
Abstract:
In one aspect, an example system includes: (i) a base including a bottom surface and a first coupling-point; (ii) a vertically-oriented elongate structure comprising a lower end, an upper end, and an inner channel, wherein the inner channel comprises an upper access-point disposed proximate the upper end, wherein the base is coupled to the elongate structure proximate the lower end; (iii) a deployable cushioning-device coupled to the elongate structure; and (iv) a tether comprising a first portion, a second portion, a third portion, and a fourth portion, wherein the first portion is coupled to the first coupling-point, the second portion is coupled to a second coupling-point of the UAV, the third portion extends through the inner channel, the fourth portion extends from the upper access-point to the second coupling-point, and the fourth portion has a length that is less than a distance between the upper access-point and the bottom surface.
Abstract:
A system, apparatus, and method for the measurement, collection, and analysis of radio signals are provided. A transport host device, including an unmanned aerial vehicle, can transport a scanning device into desired locations for autonomously collecting radio data for a wireless network, thereby enabling the rapid interrogation and optimization the wireless network, including in locations and spatial areas where previously known systems and methods have been impractical or impossible.
Abstract:
Systems and methods for developing a three-dimensional (3D) model of a cell site using an Unmanned Aerial Vehicle (UAV) to obtain photos and/or video include preparing the UAV for flight and programming an autonomous flight path about a cell tower at the cell site, wherein the autonomous flight path comprises a substantially circular flight path about the cell tower with one or more cameras on the UAV facing the cell tower; flying the UAV around the cell tower in a plurality of orbits comprising at least four orbits each with a different set of characteristics of altitude, radius, and camera angle, wherein the flying comprises of at least four orbits for a monopole cell tower and at least five orbits for a self-support/guyed cell tower; obtaining photos and/or video of the cell tower, the cell site, and cell site components during each of the plurality of orbits; and using the photos and/or video to develop the point cloud three-dimensional (3D) model of the cell site.
Abstract:
A tethered unmanned aerial vehicle firefighting system includes a firefighting drone, a lifting drone and a tether line coupling the firefighting drone to a control station through the lifting drone. The control station includes a control unit for controlling the firefighting drone and the lifting drone, a fire retardant supply, a pump coupled to the fire retardant supply, and a power supply. The tether line includes a power line coupling the power source to and powering the firefighting drone and a fire retardant hose coupled between the pump and a nozzle carried by the firefighting drone. A lifting tower hold the tether from the control station at a height above ground level, and the lifting drone maintains the tether above obstruction for the firefighter drone. The firefighter drone disperses fire retardant from the nozzle for firefighting purposes and with a substantially unlimited supply of retardant and power.
Abstract:
According to some embodiments, there is provided a tether system for coupling an unmanned aerial vehicle (UAV) to an anchor location, the tether system comprising a tether line configured to couple the UAV to the anchor location during flight of the UAV, and an anti-entanglement (AE) member extending along a section of the tether line, the AE member having a first end proximate the UAV and a second end opposite the first end, proximate the anchor location.
Abstract:
In an aspect, in general, a spooling apparatus includes a filament feeding mechanism for deploying and retracting filament from the spooling apparatus to an aerial vehicle, an exit geometry sensor for sensing an exit geometry of the filament from the spooling apparatus, and a controller for controlling the feeding mechanism to feed and retract the filament based on the exit geometry.