Abstract:
A corona discharge ozone generator has an inter-electrode gap established by dielectric spacers that engage gap confronting surfaces and are distributed in the gap so that the electrodes need not be self-supporting. Also, gas flow impedance material, which can include the gap spacers, is distributed in the gap to ensure substantially uniform flow of an oxygen containing gas.
Abstract:
The present invention relates to a tubular ozone generator which uses a novel electrode structure wherein a wound electrode has a solid insulator between the turns of the windings.
Abstract:
This invention concerns a SiO.sub.2, SiN.sub.x protection film formed by a CVD or PVD gas phase glowing method capable of preventing melting of the matrix ingredients at the surface of a dielectric material in electric discharge of an ozone generator and it relates to a dielectric material used for an ozone generator capable of overcoming the problems for the abrasion of electrode and dielectric material or melting of ions or molecules of during electric discharge, as well as a method of forming a protection film therefor based on the finding that an SiO.sub.2 film or SiN.sub.x film can be formed easily on a surface of a predetermined electric material or, further, on a surface of electrode by processing a specific reaction gas, for example, comprising a crude gas such as SiH.sub.4, SiCl.sub.4, N.sub.2, NH.sub.3 or TEOS or further incorporated with an inert gas or like by means of an atmospheric CVD process such as CVD or heat CVD and, in particular, on the finding that the protection film can be disposed directly to the surface of the dielectric material and the electrode in an ozone generator after the completion of assembling.
Abstract:
In an ozone generator, spring elements (5) of metal pointing transversely to the longitudinal direction of the tube are provided for spacing the dielectric (3) from the metallic outer electrode (1). These spring elements are either bonded directly to the dielectric (3) and are stuck onto a tape-shaped carrier which is attached to the dielectric (3) and at their free ends rest against the inside wall of the outer electrode (1). In this manner, the discharge gap is only minimally constricted and the assembly of the inner tubes (2a, 2b) is simplified.
Abstract:
A self-contained and self-supporting cell for generating ozone by corona discharge which consists basically of two open-ended straight tubes. An inner metal tube serves as a first electrode and is cooled by a fluid flowing through its core. An outer glass or ceramic tube concentrically surrounds and is shorter than the inner tube, carries a second electrode on its outer surface, and is cooled by a flow of fluid across its outer surface. The inner metal tube serves as a supporting column on which all other components are mounted and aligned. It carries a collar near each of its ends, and across each collar are clamped outer end-pieces carrying coolant seals and fittings, the inner side of the clamp assembly comprising flat aligning plates. Short cylinders of non-conductive inert material, bearing seals on each face and dry gas inlet/ozone outlet ports, fit concentrically around the inner tube and are clamped between the surfaces of clamping-plates. The ends of the dielectric tube fit inside sealing rings in the inner faces of the short cylinders. The invention also includes an extension coupling which allows the mounting of two or more dielectric tubes in series on a single metal tube.
Abstract:
An ozone generating cell which utilizes a quartz dielectric for providing high purity ozone. The quarts dielectric is cemented to one of the electrodes of the cell, and is then ground to a desired dimension.
Abstract:
A plasma generator including an excitation electrode and an opposite electrode confronting the excitation electrode such that plasma is generated upon impression of a high voltage between the excitation electrode and the opposite electrode. The plasma generator further includes granular material which is at least partially composed of dielectric grains and is provided between the excitation electrode and the opposite electrode.
Abstract:
An apparatus for producing ozone, comprising: a first electrode; a second, annular electrode surrounding the first electrode and spaced therefrom; a first tubular wall of electrically insulating material disposed between the electrodes; a first sealed glow discharge chamber surrounding one of the electrodes, formed at least in part by the tubular wall, and filled with a charge of an ionizable gas; an ozonization chamber disposed between the electrodes, formed at least in part by the tubular wall, and having an inlet for an oxygen charged medium and an outlet for the medium as ozone enriched; and, electrical conductors for connecting the electrodes to an electrical power source, whereby ionized gas in the glow discharge chamber forms a plasma electrode. The apparatus is preferably energized by applying an electrical potential between the electrodes in the form of voltage pulses at a frequency in the range of 10 to 60 KHz. In further embodiments, both electrodes are disposed in sealed glow discharge chambers filled with an ionizable gas, whereby the apparatus functions with at least two plasma electrodes.
Abstract:
A substantially tubular-shaped ozone generator embodying an inner electrode, a coaxial outer electrode surrounding the inner electrode and a tube member formed of dielectric material arranged between the inner electrode and the outer electrode. Within the tube member formed of dielectric material there is arranged a substantially cylindrical core provided at its outer surface with one or a number of substantially helically-shaped grooves extending in the axial direction of the core and forming a throughpass channel for the medium to be ozonized and the ozone which is generated.
Abstract:
An effective, efficient apparatus for treating a fluid by electron emission or corona discharge having a prolonged useful life can be constructed so as to include a first electrode, a composite dielectric structure located along the side of and spaced from the first electrode so as to define a gap between the first electrode and the dielectric structure and a second electrode. In such a structure preferably the gap is closed off by a flexible seal permitting the thickness of the gap to be adjusted; preferably this thickness is related to the operating parameters of the equipment used to power the apparatus and to the characteristics of the product or products produced in the apparatus. Preferably the dielectric structure consists of at least one layer of a first dielectric material including overlapping flat plate-like particles of an inert dielectric material located directly against the second electrode. The dielectric structure should be free from any voids and there should be no voids of any type between it and the second electrode. Preferably the surfaces of the first electrode and of the dielectric structure exposed to the gap are coated with an inherent coating of a material which either catalyzes the formation of a desired reaction product within said apparatus or acts as a reverse catalyst to minimize the decomposition of such a product. A preferred apparatus embodying the invention is intended to be utilized in the production of ozone.