Abstract:
An ozone generator system in which a multitude of plate type ozone generators are arranged adjacent to each other in a block. Each ozone generator comprises a chamber, adapted for converting oxygen to ozone by a corona discharge, and each chamber is provided with an inlet for oxygen or an oxygen-rich gas and an outlet for ozone. The ozone generators are arranged in a block module in which they are affixed by a block rack. The block rack comprises an inlet port adapted for introduction of oxygen gas, and an outlet port adapted for discharge of ozone created through conversion within the generators comprised in the block module. A multitude of first conduits, each running between said inlet port and one chamber inlet, and a multitude of second conduits, each running between said outlet port and one chamber outlet, are provided within said block rack.
Abstract:
A process and reactor for chemical conversion is taught. The process allows the selective breaking of chemical bonds in a molecule by use of fast rise alternating current or fast rise pulsed direct current, each fast rise portion being selected to have a suitable voltage and frequency to break a selected chemical bond in a molecule. The reactor for carrying out such a process includes a chamber for containing the molecule and a generator for generating and applying the selected fast rise current.
Abstract:
Disclosed herein is an apparatus and method for the production of ozone gas comprising: a parallel resonance circuit formed by a high voltage transformer and a companion flexible polymeric corona discharge chamber which encloses an electrode and serves as both a passageway and reservoir for oxygen bearing gas, and a fluid counter-electrode, all contained within an appropriate enclosure. Said corona discharge chamber possesses an electrical reactance which can be varied in order to match the electrical reactance of a companion high voltage transformer so that the components resonate, thereby maximizing the transfer of energy to the corona discharge gap. The dwell of corona discharge is further enhanced by an electrostatic potential incorporated across said tube wall (electret effect). Heat formed in said discharge gap (detrimental to ozone production) is advantageously transferred to said fluid counter-electrode which also serves as an electrolytic connection between said high voltage transformer and said corona discharge chamber. Within said chamber, relatively large volumes of oxygen may be exposed to the high field density, ozone producing, resonating discharges as a consequence of its flexible and linear design. The apparatus and methods described herein permit and encourage the use of intermittent and cyclic application of resonating energy and therefore achieves an improved degree of electrical efficiency. The teachings of the present invention make practical the use of alternative sources of energy for the private and commercial generation of ozone gas.
Abstract:
A corona reaction system of the type wherein substantially all of the heat generated by corona discharge is removed from the system by gas flow therethrough. A corona discharge gas flow path is provided which is between 2.0 and 10 inches in length and bounded by discharge electrodes spaced apart at a distance of between 0.01 to 0.250 inch, whereby low pressure drop over the gas flow path is maintained under conditions of high power density and gas temperature.
Abstract:
An improved corona reactor method and apparatus for subjecting a fluid reactant to a corona discharge, and particularly for generating ozone. The corona reactor includes a housing containing an air-cooled, modular, corona reactor core comprising a plurality of separate, individually removable, air-tight corona reactor cells. Each corona reactor cell includes two, spacedapart, metallic electrodes or shell portions defining an airtight corona discharge chamber therebetween. The exterior surfaces of the electrodes are bare and exposed to ambient; the interior (facing) surfaces are covered with a ceramic dielectric; and the fluid reactant is subjected to the corona discharge within the corona discharge chamber by appropriate inlet and outlet ports. The individual cells are electrically connected in series.
Abstract:
An ozone generator producing silent electric discharges uses wire mesh electrodes between which a dielectric sheet is maintained sandwiched by individual bus bars contacting a corresponding wire mesh electrode. A plurality of such assemblies mounted in spaced relationship to each other for the flow of air therebetween is disposed within a cylindrical chamber through which air for ozonizing and cooling is circulated.
Abstract:
An oxygen allotrope generator having a tube with an electrically grounded outer surface and an electrically positive inner surface. A plurality of corona reaction plates are spaced along the interior of the tube, the plates being longitudinally inter-connected by wires and being in electrical connection with the electrically positive inner surface of the tube. An outer jacket encloses the tube and provides a second linear pass for partially ozonated gas to flow in the generator. An alternative embodiment includes external distributed ground connections at the locations of the corona reaction.
Abstract:
A mobile system is described that that produces and applies an ozonated liquid to clean and sanitize a variety of articles and surfaces. The mobile system includes an ozonated liquid dispensing unit that forms the ozonated liquid from water and ozone gas.
Abstract:
An ozone generator includes a housing having an internal cavity and a plurality of electrode pairs located in the internal cavity. The electrode pairs each contain two electrodes arranged at a distance of a predetermined gap length, and a discharge space is formed between the two electrodes, whereby ozone is produced when a source gas flows at least between the two electrodes and a discharge is generated between the two electrodes. The ozone generator has a non-discharge portion in an arbitrary cross-section having a normal direction parallel to a main flow direction of the source gas in the internal cavity.
Abstract:
An electro chemical conversion cell that can break down certain gasses to provide ozone and monovalent oxygen from a supplied volume of a suitable 02-containing gas. The conversion cell is provided with at least one metal mesh electrode within a generator reaction chamber, and a power supply which is adapted to supply a high alternating electric current voltage to at least partially break-down O2 in the input gas to yield ozone. A fluid flow passage extends through the reaction chamber as a generally elongated passage through the reaction cavity. The fluid flow passage extends from an upstream end, where the O2-containing gas is initially supplied into the housing, to a downstream end where treated gas either flows outwardly therefrom under pressure or is evacuated from the housing. In a simplified construction, the fluid flow passage is delineated by a series of electrically insulating plates and/or spacers which are used to partition the reaction cavity.