Abstract:
A cleaning method for removing solid deposits of the oxides of nitrogen, especially dinitrogen pentoxide, from ozone generator tubes and dielectrics is described. The method circulates warm dry gas in the tube section of the generator, warm water in the shell section or both to clean the ozone generator. The oxides are evaporated and evacuated from the system. The method substantially reduces or eliminates the formation of nitric acid on the tubes and dielectrics when the generator is exposed to humidity upon being opened to the atmosphere.
Abstract:
An ozonizer and water purifier equipped with the ozonizer comprising an ozonizing discharge element; an electric circuit for applying a voltage to the ozonizing discharge element so as to produce an ozone-generating discharge; a housing having an opening formed therein for receiving the ozonizing discharge element; a cover which seals the ozonizing discharge element in the housing; and a device for turning off the voltage applied to the ozonizing discharge element when the cover is removed. In another embodiment, at least a part of the cover or housing is transparent so as to enable detection of the discharge state of the ozonizing discharge element. Also included is an ozonizer and a water purifier comprising the ozonizer which includes a discharge element for generating ozone by discharge, wherein ammonium nitrate and other substances adhere to the discharge element upon discharge; and a heat generating element for heating the discharge element to a predetermined temperature which induces scattering of at least ammonium nitrate molecules among those substances adhering to the discharge element. Also included is a method of cleaning an ozonizer having a discharge element for generating ozone by discharge wherein ammonium nitrate and other substances adhere to the discharge element upon discharge, which includes heating the discharge element to a predetermined temperature so as to evaporate at least ammonium nitrate among those substances adhering to the discharge element.
Abstract:
A sterilizer having a generator of concentrated (10% +) ozone, a holding tank receiving the generator output, a sterilizer chamber fed from the holding tank, and a control maintaining ozone concentration in the tank to insure the desired ozone level in the sterilization chamber.
Abstract:
One ozone concentrating chamber is provided therein with a part of a cooling temperature range where ozone can be selectively condensed or an oxygen gas can be selectively removed by transmission from an ozonized oxygen gas, and a part of a temperature range where condensed ozone can be vaporized, and condensed ozone is vaporized by moving condensed ozone with flow of a fluid or by gravitation to the part where condensed ozone can be vaporized, whereby the ozonized oxygen gas can be increased in concentration. Such a constitution is provided that a particle material 13 for condensation and vaporization filled in the ozone concentrating chambers 11 and 12 has a spherical shape of a special shape with multifaceted planes on side surfaces, or an oxygen transmission membrane 130 capable of selectively transmitting an oxygen gas in an ozone gas is provided.
Abstract:
An ozone generating system and an ozone generating method producing ozone at a high concentration and operating at high efficiency, in which a raw material gas with no nitrogen added and mainly containing oxygen is used. The amount of generation of NOX by-product is null. A raw material gas not containing nitrogen and mainly containing oxygen is supplied to an ozone generator, an AC voltage is applied to produce discharge light having wavelength of 428 nm to 620 nm, a catalytic material containing a photocatalytic material with a band gap energy of 2.0 eV to 2.9 eV is provided on an electrode or a dielectric in a discharge region, gas pressure is kept at 0.1 MPa to 0.4 MPa, and ozone is generated.
Abstract:
One of the electrodes is covered an insulated material outer skin and is formed with a long wire shape, a band shape or a plate shape. Another of the electrodes is formed with a bare wire by suiting the various shapes and is formed along another insulated core wire and is arranged closely contact with a parallel shape, a right angle shape, a spiral shape, a net shape or a zigzag shape. Accordingly it is possible to lower the voltage. The both electrodes are separated electrically and mechanically using an insulated material and in an ozone generation portion the both electrodes are separated completely.
Abstract:
A recirculating loop method for producing and/or using ozone is disclosed. The method comprises the steps of: supplying a gas mixture comprising oxygen and a catalyst, generating ozone from the gas mixture, and recirculating the gas mixture. In a preferred method, the method comprises the additional steps of: reacting the ozone with a chemically reactive species and adding sufficient oxygen to the oxygen and noble gas mixture to maintain the specific oxygen to noble gas ratio. Preferably, the ozone is generated by electrical discharge from oxygen and noble gas mixtures of a volume ratio of not greater than 9 to 1 oxygen to catalyst gas. The closed loop apparatus for generating ozone gas comprises: an electrical discharge chamber, a means for supplying oxygen to said electrical discharge chamber, a means for supplying a catalyst to said electrical discharge chamber, an application chamber connected to said electrical chamber, a means for supplying a chemically reactive species to said application chamber, a means for removing said chemically reactive species from said application chamber, a means for returning oxygen and the catalyst to said electrical discharge chamber.
Abstract:
An ozone generating method for increasing the quantity of ozone produced by a silent discharge in high purity oxygen includes mixing nitrogen with the high purity oxygen in a predetermined ratio. The nitrogen gas is a catalyst for stable and highly efficient ozone generation from a high purity oxygen source.
Abstract:
A continuous ozone generation and recovery system is provided including a source of oxygen-rich gas; at least one high-throughput corona generator; means for passing the oxygen-rich gas through an electrical corona at a high ratio of gas volume:electrode area to synthesize ozone in a concentration not greater than 1 wt% in the gas stream; means for cooling the generator and maintaining the ozone-containing oxygen stream below decomposition temperature; means for cooling the ozone-containing oxygen gas stream; means for contacting the cooled gas stream with silica gel to adsorb the ozone and recover an oxygen-rich gas stream; means for recycling the recovered oxygen-rich gas stream for ozone synthesis; and means for recovering the adsorbed ozone from the silica gel.Recycle of unconverted oxygen has strong economic value. Dry nitrogen-rich gas stream from an air separation unit which also provides the oxygen source may be used advantageously as an inert carrier gas for desorbing the ozone.