Abstract:
Halide fibers are protected by coatings up to 2.mu.m thick of chalcogenide glasses, e.g. glasses based on compounds of S, Se or Te with Ge or As. The coatings are deposited on the fiber preform by ion deposition sputtering. Preferably the preform is etched by directing a stream of inert ions at it. Most suitably the etching immediately precedes the coating.
Abstract:
The invention gives a coating with a very high vitrification rate. The resulting surface has physicochemical characteristics which are similar to those of fluoride glass. In order to achieve this result, the material constituting the fluoride glass enamel quickly crosses the temperature range between the melting point and the glossy transition temperature. Moreover, the metallic substrate temperature must be high enough to enable an active physiochemical process at the glass-metal interface which results in a correct "hooking". A "hooking" temperature is higher than one where a physical adhesion occurs, which results from Van der Waals interactions without any formation of chemical bonds at the glass-metal interface. The particular chemical reactivity of molten fluorides, which otherwise results in critical problems of corrosion, is in this case a favorable factor which generally reduces the hooking temperature to a level which is far below the glass melting temperature.
Abstract:
An infrared ray-transmitting glass composition for optical fibers consisting essentially of 28 mol % to 38 mol % of BaF.sub.2, 2 mol % to 7 mol % of GdF.sub.3 and 58 mol % to 69 mol % of ZrF.sub.4, and optical fibers comprising said glass composition.
Abstract:
Glass material for infrared ray-transmitting optical fibers comprises a three-component material made of a 28 mol % to 38 mol % BaF.sub.2 -2 mol % to 7 mol % GdF.sub.3 -58 mol % to 69 mol % ZrF.sub.4 -based composition. The glass material is cast in a metal mold with a hollow section which is preheated to a temperature of at least 100.degree. C. but below the glass deformation temperature and annealing the melt in the metal mold to form a glass rod. The glass rod forming step includes heating the melt in the temperature range of between about 200.degree. C. and less than the glass deformation temperature and cooling the melt. The glass rod is removed from the metal mold and optically polished at the ends and sides and is then drawn into a fiber while applying tension to the tip of the glass rod while the glass rod is being heated. The glass rod is drawn into a glass fiber while maintaining the temperature at the end portion of the glass rod constant.
Abstract:
Aspects of the embodiments are directed to systems and methods for forming an optical fiber in a low gravity environment, and an optical fiber formed in a low gravity environment. The system can include a preform holder configured to secure a preform; a heating element secured to a heating element stage and residing adjacent the preform holder; a heating element stage motor configured to move the heating element stage; a tension sensor; a spool; a spool tension motor coupled to the spool and configured to rotate the spool; and a control system communicably coupled to the heating element stage motor and the spool tension motor and configured to control the movement of the heating element stage based on a rotational speed of the spool. The optical fiber can include a fluoride composition, such ZrF4-BaF2-LaF3-AlF3-NaF (ZBLAN), and can be characterized by an insertion loss in a range from 13 dB/1000 km to 120 dB/1000 km.
Abstract:
Optical fibers with previously unattainable characteristics and the method of producing the same are disclosed and claimed herein. Specifically, the application discloses and claims a method to produce ZBLAN, Indium Fluoride, Germanate and Chalcogenide optical fibers and other similar optical fibers in a microgravity environment. The resulting optical fibers have unique molecular structures not attainable when optical fibers with the identical chemical composition are produced in a standard 1 gravity environment.The method of the invention requires a novel draw tower and modified preform, which are specifically designed to operate in microgravity environments. A lead wire is inserted into the preform that, when wound onto a spool in the draw tower, causes a fiber to form. The pull rate of the lead wire controls the diameter of the fiber.
Abstract:
Optical devices and a method for manufacturing these devices. One optical device includes a core region having a first medium of a first refractive index n1, and includes a cladding region exterior to the core region. The cladding region includes a second medium having a second refractive index n2 higher than the first refractive index n1. The cladding region further includes a third medium having a third refractive index n3 lower than the first refractive index n1. The third medium is dispersed in the second medium to form a plurality of microstructures in the cladding region. Another optical device includes a plurality of core regions including at least one core having a doped first medium, and includes a cladding region exterior to the plurality of core regions. The core regions and the cladding region include a phosphate glass.
Abstract:
Various embodiments of optical fiber designs and fabrication processes for ultra small core fibers (USCF) are disclosed. In some embodiments, the USCF includes a core that is at least partially surrounded by a region comprising first features. The USCF further includes a second region at least partially surrounding the first region. The second region includes second features. In an embodiment, the first features are smaller than the second features, and the second features have a filling fraction greater than about 90 percent. The first features and/or the second features may include air holes. Embodiments of the USCF may provide dispersion tailoring. Embodiments of the USCF may be used with nonlinear optical devices configured to provide, for example, a frequency comb or a supercontinuum.
Abstract:
Various embodiments of optical fiber designs and fabrication processes for ultra small core fibers (USCF) are disclosed. In some embodiments, the USCF includes a core that is at least partially surrounded by a region comprising first features. The USCF further includes a second region at least partially surrounding the first region. The second region includes second features. In an embodiment, the first features are smaller than the second features, and the second features have a filling fraction greater than about 90 percent. The first features and/or the second features may include air holes. Embodiments of the USCF may provide dispersion tailoring. Embodiments of the USCF may be used with nonlinear optical devices configured to provide, for example, a frequency comb or a supercontinuum.
Abstract:
A method of manufacturing an optical fiber preform, the method comprising: providing a substantially elongated core preform made out of a core fluorinated glass; providing a substantially elongated and substantially tubular cladding preform made out of a cladding fluorinated glass, the cladding preform defining a bore extending substantially longitudinally therethrough; inserting the core preform into the bore of the cladding preform; fusing the core preform and the cladding preform to each other to produce an intermediate preform; heating the intermediate preform up to a stretching temperature, the stretching temperature being such that the core and cladding fluorinated glasses both have a viscosity of between 10−7 and 10−9 Pa s at the stretching temperature; stretching the intermediate preform at the stretching temperature to produce a stretched intermediate preform; and cutting a section of the stretched intermediate preform. Typically, the stretching temperature is between a vitreous transition temperature and a crystallization temperature of the core and cladding glasses.