Abstract:
A method for controlling a hydrostatic drive unit of a work vehicle may generally include determining a reference swashplate position of a hydraulic pump of the hydrostatic drive unit, wherein the reference swashplate position is associated with an uncompensated current command, and determining an actual swashplate position of the hydraulic pump, wherein the actual swashplate position differs from the reference swashplate position due to a loading condition of the work vehicle. The method may also include determining a closed-loop current command based a on the actual and reference swashplate positions and generating a modified current command based on the uncompensated current command and/or the closed-loop current command. The modified current command may differ from the closed-loop current command when an operator input is within a predetermined control input range and may be equal to the closed-Loop current command when the operator input is outside the predetermined control input range.
Abstract:
The invention relates to a device (1) for state monitoring in hydrostatic displacement units (2), in particular in axial piston machines (3) operated as a pump or as a motor. The device (1) comprises an acquisition unit (4) with a multiplicity of sensors (5) which are attached to the hydrostatic displacement unit (2) and serve to acquire monitoring data (6) and operating data (7), and an evaluating unit (8) which has a device (9) for analysing the monitoring data in the frequency range and a device (10) for analysing the monitoring data in the time range. A diagnostic unit (11) with an output unit (13) is connected to the evaluating unit (8).
Abstract:
A variable displacement pump including a first sensor configured to measure a position of the variable displacement pump. The first sensor may be a rotary angle sensor that is mounted to the yoke shaft of the variable displacement pump. A controller is configured to receive position data from the first sensor and control a single or dual stage hydraulic control valve thereby adjusting the output of the first variable displacement pump.
Abstract:
In a variable displacement type hydraulic pump/motor assembly including at least one internally movable component, such as a yoke, a swashplate, and the means for moving the swashplate, the improvement includes imparting on this component absolute location indicia markings and the addition of an optical/electronic sensor unit capable of reading such indicia markings fixedly located on a housing of the pump/motor assembly and including an optical read head extending into the housing interior and located at a spaced distance from the indicia markings for reading same, relative to a reference location, and producing a signal indicative of the absolute position of the movable component. The signal can then, in turn, be used for controlling the displacement of the pump/motor assembly. A method for determining the absolute component position is also set forth.
Abstract:
A variable capacity hydraulic machine has a rotating group located within a casing and a control housing secured to the casing to extend across and seal an opening in the casing. The control housing accommodates a control circuit and a pair of sensors to sense change in parameters associated with the rotating group. One of the sensors is positioned adjacent the barrel on the rotating group to sense rotational speed and the other senses displacement of the swashplate. The control housing accommodates a control valve and accumulator to supply fluid to the control valve.
Abstract:
A sensor for a variable displacement pump is provided. The pump has a housing containing a swashplate that is adapted to rotate about an axis. The sensor includes a magnet connected to the swashplate to rotate with the swashplate. A semiconductor chip is disposed proximate the magnet and within the housing. A control is adapted to direct a current through the semiconductor chip and to determine the voltage across the semiconductor chip. The control is further adapted to determine the angle of the swashplate relative to the housing based on the determined voltage.
Abstract:
A sensor for a variable displacement pump is provided. The pump has a housing containing a swashplate that is adapted to rotate about an axis. The sensor includes a magnet connected to the swashplate to rotate with the swashplate. A semiconductor chip is disposed proximate the magnet and within the housing. A control is adapted to direct a current through the semiconductor chip and to determine the voltage across the semiconductor chip. The control is further adapted to determine the angle of the swashplate relative to the housing based on the determined voltage.
Abstract:
A relation between an instruction current value (is) to be given to a solenoid valve and its supply time range (t) is predetermined, and a silting prevention current instruction (is) is given to the solenoid valve according to the this relation. Then, silting can be prevented without fail even if a control current instruction is zero, and no fine vibration is caused in a hydraulic actuator when the control current instruction is being output.
Abstract:
A relation between an instruction current value (is) to be given to a solenoid valve and its supply time range (t) is predetermined, and a silting prevention current instruction (is) is given to the solenoid valve according to the this relation. Then, silting can be prevented without fail even if a control current instruction is zero, and no fine vibration is caused in a hydraulic actuator when the control current instruction is being output.
Abstract:
A control device is herein disclosed which comprises a drive piston 12p for changing the position of a slanting plate in a variable capacity pump 11, an electromagnetic proportional valve 13 for driving the drive piston, and a position detector 14 for detecting a position of the slanting plate. The control device performs a flow rate control of operating oil by controlling the electromagnetic proportional valve in accordance with a difference between a flow rate instruction value Fr for the operating oil and a position detection value from the position detector so as to change the position of the slanting plate. The control device further includes a pressure detector 18 for detecting a pressure of the operating oil supplied to an injection cylinder 10, and correcting means for correcting the flow rate instruction value on the basis of a pressure detection value from the pressure detector to output a corrected flow rate instruction value.