Abstract:
A row of rich-side flame holes is centrally arranged. Two rows of lean-side flame holes are arranged on both sides of the rich-side flame hole row, respectively. In addition, two rows of rich-side flame holes are arranged on the outsides of the two lean-side flame hole rows, respectively. A lower end part of a central rich-side burner part is projected into a tubular part into which the rich-side mixture is introduced, and communication holes in fluid communication with an inner space are formed in walls on both sides so as to pass completely therethrough in alignment with each other. Each communication hole has a larger diameter than an inner width P and is disposed at a potion situated nearer to the upper of the tubular part and nearer to the front so as to leave, at the rear, a space in which dust p particles are accumulated.
Abstract:
A biomass-mixed, pulverized coal-fired burner is provided, capable of burning biomass fuel as auxiliary fuel in large quantities and burning only pulverized coal when the biomass fuel is not sufficiently available. The biomass-mixed, pulverized coal-fired burner includes a biomass fuel jet nozzle that extends axially along the biomass-mixed, pulverized coal-fired burner, a fuel jet nozzle that is open midway in the biomass fuel jet nozzle, a secondary air nozzle that surrounds the fuel jet nozzle, and a tertiary air nozzle that surrounds the secondary air nozzle. A pulverized coal component in a fuel stream as a mixture of the pulverized coal fuel stream and the biomass fuel stream is distributed with a higher concentration on an outer circumferential wall side and a biomass fuel component in the fuel stream is distributed inside of the pulverized coal fuel component.
Abstract:
A low NOx burner has a housing that includes a burner head defining a gas manifold and a primary flame zone downstream of the burner head. The burner has a gas inlet for receiving gas. Flow-through air vents are disposed around a center of the burner head and extending through the burner head thereby enabling cold core air to flow from an annular core space upstream of the burner head to the primary flame zone downstream of the burner head. The burner also includes a plurality of premix air vents in fluid communication with the manifold for premixing air and gas within the manifold and for emitting premixed air and gas into the primary flame zone. A plurality of staging pipes extend from the manifold into the primary flame zone for conveying gas into the primary flame zone. The burner includes an ignition device extending into the primary flame zone.
Abstract:
One embodiment of the present disclosure relates to a combustor assembly which has a burner assembly and a combustor. The burner assembly has a body having a first end and a second end and a center passageway. The center passageway extends between the first end and the second end of the body. The body of the burner assembly is provided with a biomass inlet for receiving biomass, a primary air inlet for receiving air, a gas inlet for receiving gas, and a secondary air inlet for receiving air. The biomass inlet is in communication with the center passageway.
Abstract:
The invention relates to a solid fired hot gas generator which comprises a plurality of solid burners for extending the regulating range, which form a multiple solid burner with an enlarged regulating range. A solid feed and a combustion air feed are assigned to each solid burner and with the aid of a dosing means a separate, dosed solid feed to each solid burner is guaranteed. The firing power of the multiple solid burner which is in particular a multiple impulse burner extends from the minimum power of one of the solid burners to the maximum power of all solid burners so that a regulation of all necessary load regions of a plant unit to be supplied is covered.
Abstract:
An apparatus and method is presented for reducing mono nitrogen oxide emissions in a hydrocarbon processing furnace. A preferred embodiment hydrocarbon cracking furnace includes a firebox with a set of wall burners and a set of floor burners, the floor burners comprising secondary burner tips burning a fuel-rich mixture and positioned below primary burner tips burning a fuel-lean mixture. A portion of flue gases are recirculated from the primary burner combustion area to the secondary burner combustion area and back to the primary burner combustion area. The floor burners further comprise a set of steam injection ports that inject steam into a conical flow to contact flames at the primary burner tips, reducing flame temperature and thereby reducing thermal NOx. The steam injection ports are positioned in the firebox above the primary burner tips.
Abstract:
An annular injector is described. The injector includes a first bayonet assembly and a second bayonet assembly each including a terminal end and a tip end. The second bayonet assembly is configured to be concentrically coupled at least partially about the first bayonet assembly. An outer diameter of the first bayonet assembly and an inner diameter of the second bayonet assembly vary at the tip end to define a first substantially annular nozzle. The first bayonet assembly includes a maximum outer diameter that is greater than a minimum inner diameter of the second bayonet assembly and at least a portion of at least one of the first bayonet assembly and the second bayonet assembly extends from the tip end to the terminal end. The injector includes a third bayonet assembly configured to be concentrically coupled at least partially about the second bayonet assembly to define a second substantially annular nozzle.
Abstract:
A fluid-cooled through-port oxy-fuel burner for converting an air-fuel regenerator port from air-fuel combustion to oxy-fuel combustion and an associated furnace and method. The oxy-fuel burner is suitable for installing through a regenerator port neck. The burner has an elbow-like bend to accommodate the geometry of the regenerator port neck. The burner has a cooling fluid jacket, a fuel conduit, a first oxidant conduit, and optionally an oxidant staging conduit.
Abstract:
A high speed burner having very low polluting emissions, suitable for the process for heat treatment furnaces of a load in free atmosphere. The burner is capable of creating a compact and lean flame with the peculiarity of keeping the NOx emissions at very low levels at any chamber temperature and at any excess combustion air. The burner requires a single inlet for the comburent air and a single inlet for the combustible gas.
Abstract:
A high efficiency laminar flow burner system for proving a stream of heat energy including a supply input module for providing fuel and laminar streams of air to a combustion manifold. The laminar air delivery system includes a damper, a blower, and an air delivery controller. The air delivery controller receives an efficiency signal to control the flow of a laminar air intake stream by adjusting the damper. The combustion manifold includes an air-fuel mixing system, a stoichiometric unit, and a refractory unit each coupled to one another. The laminar air intake stream traveling from the supply input module passes through a stoichiometric unit body to meet with a first combustion stream from an air-fuel mixing chamber within the stoichiometric unit body to define a second combustion stream. The second combustion stream then travels across the refractory passageway to define a third combustion stream.