Abstract:
A detector for detecting ionizing radiation comprises a scintillator 10 selected to emit light in response to incidence thereon of radiation to be detected, at least one detector 16 for detecting said emitted light, and at least one optical waveguide 12 for transmitting said emitted light to said detector 16. The optical waveguide typically comprises a flexible solid or hollow fiber that can be incorporated into a flexible mat or into a fiber-reinforced structure, so that the detector is integrated therewith.
Abstract:
A medical imaging system has a radiation source, a radiation sensor, a data-collection unit, and an imaging system. The radiation source has an opening to direct a collimated radiation beam in a direction towards a patient. The radiation sensor is disposed proximate the opening and within the collimated radiation beam to measure a fluence of the collimated radiation beam. The data-collection unit is disposed to collect radiation from the collimated beam after interaction with the patient. The imaging system is in communication with the data-collection unit and configured to generate an image of a portion of the patient from the collected radiation.
Abstract:
According to one aspect, methods for validating plastic scintillating detectors (PSD) for photon dosimetry and applications of same. In some embodiments, the method includes using at least one PSD to obtain at least one dose measurement, determining at least one PSD correction factor suitable for compensation for variations in energy response of the at least one PSD over the energy range of interest, and determining at least one corrected dose measurement based on the at least one PSD correction factor. In some embodiments, the PSD may be incorporated into a wearable article, such as gloves, eyewear and the like, or used for skin surface measurements.
Abstract:
A medical imaging system has a radiation source, a radiation sensor, a data-collection unit, and an imaging system. The radiation source has an opening to direct a collimated radiation beam in a direction towards a patient. The radiation sensor is disposed proximate the opening and within the collimated radiation beam to measure a fluence of the collimated radiation beam. The data-collection unit is disposed to collect radiation from the collimated beam after interaction with the patient. The imaging system is in communication with the data-collection unit and configured to generate an image of a portion of the patient from the collected radiation.
Abstract:
The present invention is a directed to a non-pixelated scintillator array for a CT detector as well as an apparatus and method of manufacturing same. The scintillator array is comprised of a number of ceramic fibers or single crystal fibers that are aligned in parallel with respect to one another. As a result, the pack has very high dose efficiency. Furthermore, each fiber is designed to direct light out to a photodiode with very low scattering loss. The fiber size (cross-sectional diameter) may be controlled such that smaller fibers may be fabricated for higher resolution applications. Moreover, because the fiber size can be controlled to be consistent throughout the scintillator array and the fibers are aligned in parallel with one another, the scintillator array, as a whole, also is uniform. Therefore, precise alignment with the photodiode array or the collimator assembly is not necessary.
Abstract:
A radiation detector (24) for an imaging system includes a two-dimensional array (50) of nondeliquescent ceramic scintillating fibers or sheets (52). The scintillating fibers (52) are manufactured from a GOS ceramic material. Each scintillating fiber (52) has a width (d2) between 0.1 mm and 1 mm, a length (h2) between 0.1 mm and 2 mm and a height (h8) between 1 mm and 2 mm. Such scintillating fiber (52) has a height (h8) to cross-sectional dimension (d2, h2) ratio of approximately 10 to 1. The scintillating fibers (52) are held together by layers (86, 96) of a low index coating material. A two-dimensional array (32) of photodiodes (34) is positioned adjacent and in optical communication with the scintillating fibers (52) to convert the visible light into electrical signals. A grid (28) is disposed by the scintillating array (50). The grid (28) has the apertures (30) which correspond to a cross-section of the photodiodes (34) and determine a spatial resolution of the imaging system.
Abstract:
A method of measuring in real time a dose of radiological radiation absorbed by a region under inspection subjected to a flux of radiological radiation, the method comprising the steps consisting in: a) detecting the incident radiation at at least one point of the region under inspection using at least a first bundle of measurement optical fibers (2) containing at least one fiber placed in said region under inspection and adapted to generate a light signal on receiving radiological radiation; b) measuring said light signal away from the region under inspection after it has been transmitted along the measurement optical fiber; and c) determining the dose of radiological radiation received by said measurement optical fiber on the basis of said light signal.
Abstract:
A two-dimensional ionising particle detector including a matrix of detecting fibers, each detecting fiber forming a pixel of the detector. Each detecting fiber is composed of a glass capillary filled with a liquid scintillator for which the chemical composition is chosen such that an average free path of primary scintillation photons is negligible compared with a diameter of the capillary. The detector is applicable, for example, to high resolution particle imagery.
Abstract:
A radiation detection device, system, and method for use in homeland security is disclosed. The device is portable and includes a photomultiplier tube (PMT) connected to an end of a substantially rigid thin-walled aluminum tube. Inside the aluminum tube, a substantially straight scintillating fiber is disposed (so as to be shielded from ambient light), and an end of the scintillating fiber is optically coupled to the PMT. A voltage output signal from the PMT is signal-processed with a filter to remove high-frequency noise (which may arise from solar radiation spikes) and fed to a voltage-responsive alarm or signalling device. The portable device is employed, for example, by responders to nuclear incidents and is packaged as a small wearable hands-free and eyes-free unit with a continuous in-use self-testing feature.
Abstract:
A radiation detection device, system, and method for use in homeland security is disclosed. The device is portable and includes a photomultiplier tube (PMT) connected to an end of a substantially rigid thin-walled aluminum tube. Inside the aluminum tube, a substantially straight scintillating fiber is disposed (so as to be shielded from ambient light), and an end of the scintillating fiber is optically coupled to the PMT. A voltage output signal from the PMT is signal-processed with a filter to remove high-frequency noise (which may arise from solar radiation spikes) and fed to a voltage-responsive alarm or signalling device. The portable device is employed, for example, in baggage and vehicle radiation scanning systems, as well as for large-area radiation mapping and directional radiation sensing.