Abstract:
A dispenser cathode comprises an electron emissive material containing BaAl.sub.4 and Ni, the porous metal base body and a sleeve. The activation aging time of the dispenser cathode according to the present invention is shortened greatly as compared with the conventional dispenser cathode and therefore, the productivity can be increased.
Abstract:
An improved scandate cathode having an increased emission density is prepared from a porous tungsten billet that has been impregnated with Ba.sub.3 Al.sub.2 O.sub.6 by coating the top surface of the impregnated billet with a mixture of Sc.sub.6 WO.sub.12,Sc(WO.sub.4).sub.3, and W in the mole ratio of 1:3:2, heating the billet to about 1000.degree. C. in a vacuum to cause BaWO.sub.4 and Sc to form in the billet in a molar ratio of 1:1, removing the billet and cleaning in a jewelers lathe, and preparing the billet for a cathode environment.
Abstract translation:通过用Sc3WO12,Sc(WO4)3和W的混合物涂覆浸渍的坯料的顶表面,从已经浸渍有Ba 3 Al 2 O 6的多孔钨钢坯制备具有增加的发射密度的改进的钪酸盐阴极,摩尔比 1:3:2,在真空中将坯料加热至约1000℃,使BaWO4和Sc以1:1的摩尔比在坯料中形成,除去坯料并在珠宝车床中进行清洗 钢坯用于阴极环境。
Abstract:
A manufacturing method for a dispenser cathode for the electron gun, said cathode comprising a container, an electron emissive material in the container, a porous metal body covering the emissive material, and a sleeve supporting the container. The method includes gas plasma sputtering process to form a porous metal body over the surface of the electron emissive material in the container. The method also may include forming a skirt along the upper edge of the container to strengthen the adherence of the porous metal body to the skirt and to achieve tight sealing of the skirt and porous metal body. The method also can prevent damage of the porous metal body, and can increase the beam currents.
Abstract:
A cathode is made from tungsten powder using as an impregnant the product rmed from adding about 1 mole of a member selected from the group consisting of zirconium, zirconium dioxide, hafnium, hafnium dioxide, uranium, uranium dioxide, titanium, and titanium dioxide to about 50 to about 100 moles of a compound selected from the group consisting of Ba.sub.3 Al.sub.2 O.sub.6, Ba.sub.3 WO.sub.6, and Ba.sub.4 Al.sub.2 O.sub.7.
Abstract:
Disclosed are a method for the fabrication of an impregnated cathode and a cathode obtained thereby. The impregnation is obtained by applying a sol-gel method. The emissive material which impregnates the body of the cathode only partially fills the pores. This facilitates the migration of the material towards the surface and increases the lifetime of the cathode.
Abstract:
An impregnated cathode comprising a cathode obtained by impregnating pore portions of a refractory porous substrate with an electron emissive material containing Ba and formed thereon a plurality of thin films made of a high melting metal and Sc, or a high melting metal and a Sc oxide, or a high melting metal, Sc and a Sc oxide, or a high melting metal and a compound of Sc, W and O, said thin films having the same composition but different densities can maintain good emission characteristics even after the sealing off step of tube production because the thin films formed on the cathode surface are oxidation-resistant.
Abstract:
An extremely long-life, highly reproducible cathode is produced by preparing a porous sintered metal matrix, impregnating the matrix with a reagent containing a transition metal to modify the surface structure of the matrix, and then impregnating the surface-modified metal matrix with a barium-containing reagent to produce a cathode structure in which barium atoms are held in a metal-metal interaction with the transition metals and the surface of the matrix. In a preferred embodiment, the transition metal oxide is TiO.sub.2. This produces a barium/transition metal oxide surface structure which permits cathode operating temperatures on the order of 650 degrees C. The barium is stable and is retained on the surface of the metal matrix, so further dispensing is not required.
Abstract:
The invention relates to a method of manufacturing a dispenser cathode having a porous tungsten body, in which a metal oxide is provided in the body and the body is impregnated with barium. Good results as regards life and resistance to ion bombardment are obtained if the comparatively cheap oxides of gallium and indium are used.
Abstract:
An emitter-dispenser housing for a controlled porosity dispenser cathode manufactured of a single material as a unitary piece by a chemical vapor deposition process in which a configured mandrel is coated with a layer of material such as tungsten, for example, so that when the mandrel is removed from the coating of material a hollow housing is formed having a side wall and an end wall which define a reservoir. In addition, intersecting strips of this same material as the coating, which had been placed in the mandrel, extend transversely across the reservoir with the edges thereof atomically bonded to the coating during the chemical vapor deposition to form a unitary piece. Thereafter an array of apertures is formed in the end wall of the housing by laser drilling to create an emitter-dispenser.
Abstract:
This invention concerns a thermoelectronic cathode for hyperfrequency electron tubes.The cathode comprises a cylindrical molybdenum casing, the lower portion of which contains a heating filament, while the upper portion contains two superimposed porous bodies, the lower one made from impregnated material, and the upper one from non-impregnated material.