Abstract:
The present invention provides a photocathode which is formed on a substrate consisting of polycrystalline members, and which mainly consists of a semimetal, manganese or silver, and one or a plurality of alkaline metals, characterized in that the photocathode is formed on an alkaline metal oxide layer formed on the substrate, and a composition ratio of the semimetal, manganese or silver, and the one or a plurality of alkaline metals is stoichiometric or almost stoichiometric. The photocathode of the present invention has high sensitivity and can stably maintain the sensitivity for a long period of time.
Abstract:
According to the invention, under glancing incidence a first radiation (6) in the infrared range and which is linearly polarized is supplied to a target (2) made from a non-electrically insulating material and simultaneously to said target is supplied under a non-glancing incidence a second radiation (8) in the visible or ultraviolet range, in such a way that a same zone of the target is reached by the first and second radiations, the polarizing plane of the first radiation also being such that it contains a perpendicular to said zone, which then produces electrons.Application to the production of free electron lasers.
Abstract:
An electron beam generator particularly adapted for direct-write semiconductor lithography applications is disclosed which includes a photoemissive cathode, a modulable laser for illuminating the photoemissive cathode, and light optics to create an optical pattern on the cathode. The photoemissive cathode is composed of a light transmissive substrate onto which is deposited an optically semitransparent, electrically conductive film. This film in turn is coated with a thin layer of a photoemissive substance such as cesium antimonide so that the photoemissive cathode emits an intense and substantially monochromatic beam of electrons upon laser light illumination. The emitted electron beam is configured in accordance with the optical pattern created on the cathode, and in passing through successive electron optical devices is further shaped and sized for use, for example, in lithographically generating very large scale integrated (VLSI) circuits on semiconductors.
Abstract:
The present invention relates to an alkali metal generating agent and others for formation of a photo-cathode or a secondary-electron emitting surface capable of stably generating an alkali metal. The alkali metal generating agent is used in formation of a photo-cathode for emitting a photoelectron corresponding to incident light, or in formation of a secondary-electron emitting surface for emitting secondary electrons corresponding to an incident electron. Particularly, the alkali metal generating agent contains at least an oxidizer comprising at least one vanadate with an alkali metal ion as a counter cation, and a reducer for reducing the ion. An alkali metal generating device comprises at least the alkali metal generating agent and a case housing it, and the case is provided with a discharge port for discharging the vapor of the alkali metal.
Abstract:
The present invention relates to an alkali metal generating agent and others for formation of a photo-cathode or a secondary-electron emitting surface capable of stably generating an alkali metal. The alkali metal generating agent is used in formation of a photo-cathode for emitting a photoelectron corresponding to incident light, or in formation of a secondary-electron emitting surface for emitting secondary electrons corresponding to an incident electron. Particularly, the alkali metal generating agent contains at least an oxidizer comprising at least one tungstate with an alkali metal ion as a counter cation, and a reducer for reducing the ion. An alkali metal generating device comprises at least the alkali metal generating agent and a case housing it, and the case is provided with a discharge port for discharging the vapor of the alkali metal.
Abstract:
This invention discloses a thin-film-coated photocathode, including a photocathode formed of first material consisting of potassium cesiuin antimonide and a thin-film coating of a second material consisting of cesium bromide (CsBr).
Abstract:
A cathode (5) for emitting photoelectrons or secondary electrons comprises a nickel electrode substrate (5c) with an aluminum layer (5b) deposited on it; an intermediate layer (5a) consisting of carbon nanotubes formed on the aluminum layer; and an alkaline metal layer (5d) formed on the intermediate layer (5a) and composed, for example, of particles of an alkali antimony compound that either emits photoelectrons in response to incident light or emits secondary electrons in response to incident electrons. The decrease in defect density of the particles reduces the probability of recombination of electron and hole remarkably, thus increasing quantum efficiency.
Abstract:
A photomultiplier is constituted by a photocathode and an electron multiplier having a typical structure in which a dynode unit having a plurality of dynode plates stacked in an incident direction of photoelectrons, an anode plate, and an inverting dynode plate are sequentially stacked. Through holes for injecting a metal vapor are formed in the inverting dynode plate to form secondary electron emitting layers on the surfaces of dynodes supported by the dynode plates, and the photocathode. With this structure, the secondary electron emitting layers are uniformly formed on the surfaces of the dynodes. Therefore, variations in output signals obtained from anodes can be reduced regardless of the positions of the photocathode.
Abstract:
A high performance reflection type photocathode for use in a photomultiplier tube is formed by sequentially depositing three layers on a substrate made of nickel. The first layer is made of either one of chromium, manganese and magnesium as a major component and is deposited over the substrate. The second layer is made of aluminum as a major component and is deposited over the first layer. The third layer is made of antimony and at least one kind of alkaline metals and is deposited over the second layer.