Abstract:
A plasma display panel assembly comprises: a panel assembly which includes a front panel and a rear panel for displaying an image in combination with the front panel; a chassis base joined to the panel assembly for conducting and dissipating heat generated in the panel assembly; a thermal conductivity medium formed of a heat radiation sheet made of a polymer resin for conducting and dissipating heat generated in the panel assembly, and a ceramic layer formed at least on a surface of the heat radiation sheet, and disposed between the panel assembly and the chassis base and joining the chassis base and the panel assembly; a circuit board joined to the chassis base, electronic parts being mounted on the circuit board for transmitting electrical signals to the panel assembly; and a case which accommodates the panel assembly, the chassis base, and the circuit board. Since the high thermal conductivity ceramic material rapidly conducts heat generated in the panel assembly, uniform heat dissipation from a large size panel assembly can be achieved, thereby reducing temperature difference in the panel assembly and solving a bright afterglow problem accompanied by increases in the brightness.
Abstract:
A plasma display panel having improved heat transfer efficiency and temperature distribution, and a plasma display device including the same are disclosed. The plasma display device includes a plasma display module that includes a plasma display panel on which an image is displayed, a chassis base facing the plasma display panel, a circuit unit disposed at a back side of the chassis base for driving the plasma display panel, a front cover and a back cover that house the plasma display module, and at least a heat radiation coating layer formed between the front cover and the back cover. The heat radiation layer reduces a conventional heat dissipation sheet unnecessary, and thus reduces process times and manufacturing costs.
Abstract:
A plasma display device entirely distributes the temperature of a heat generator, and improves the detachability of a heat dissipating sheet and coherence with the heat generator. The plasma display device includes a plasma display panel for displaying an image, a chassis base disposed to face the plasma display panel, and a heat dissipating sheet disposed between the plasma display panel and the chassis base and including a resin material and carbon fibers fixed in the resin material. Preferably, the carbon fibers are intensively impregnated in a center portion of the resin material toward the display panel, and are arranged at least in one direction parallel to the display panel, or in different directions with respect to each other and separated from each other by the resin material.
Abstract:
A plasma display device which improves the adhesion rate of a thermal conductive medium. A chassis base is disposed substantially parallel to a plasma display panel. A thermally conductive medium is disposed between the plasma display panel and the chassis base and is closely adhered to both the plasma display panel and the chassis base. An adhesive pad is interposed between the plasma display panel and the chassis base along the edge of the thermally conductive medium and is adhered to both the plasma display panel and the chassis base. The thermally conductive medium includes a plurality of thermally conductive particles of high thermal conductivity.
Abstract:
An electronic device and coupled flexible circuit board and method of manufacturing. The electronic device is coupled to the flexible circuit board by a plurality of Z-interconnections. The electronic device includes a substrate with electronic components coupled to it. The substrate also has a plurality of device electrical contacts coupled to its back surface that are electrically coupled to the electronic components. The flexible circuit board includes a flexible substrate having a front surface and a back surface and a plurality of circuit board electrical contacts coupled to the front surface of the flexible substrate. The plurality of circuit board electrical contacts correspond to plurality of device electrical contacts. Each Z-interconnection is electrically and mechanically coupled to one device electrical contact and a corresponding circuit board electrical contact.
Abstract:
To increase heat dissipation from a plasma display panel, a heat sinking unit 2 bonded to a curved back surface 11 of a panel unit includes a large number of fin blocks 21 arranged spaced apart from each other by a prescribed distance and a flexible thin-wall portion 22, and a joining section 221, which consists of fin anchoring portions 212 and thin-wall portions 22, is capable of being bent between the fin blocks 21, thus allowing the heat sinking unit 2 to conform to the curvature of the panel unit back surface 11.
Abstract:
A plasma display device comprising a plasma display panel, a chassis member which is disposed substantially in parallel with the plasma display panel, and a thermally conductive medium which is interposed between the plasma display panel and the chassis member.
Abstract:
The temperature of a fluorescent lamp is optimized by monitoring the current used to power the lamp and changing the cooling state (on to off, off to on) whenever lamp current increases. The optimum current level is some minimum value; any increases in this value are detected and a signal is fed back to a controller which regulates the instant mode of operation of a cooling device. With the cooling mode reversed, the lamp current will be reduced towards its optimum value. The cooling mode remains unaltered until the lamp current rises again. Thus the optimum temperature (minimum current to produce the required light level) is achieved without reference to either an absolute current or temperature.
Abstract:
A security light system includes a plurality of light fixtures, whereby each light fixture has a light module including an infrared light and an LED that generates white light. Each light fixture includes a driver circuit for controlling operation of the infrared light and the LED. The system includes a light intensity controller for communicating with each light fixture. The light intensity controller includes a control element that enables an operator to selectively increase and decrease the intensity level of the infrared and white light generated by the infrared light and the LED.
Abstract:
A solid state lighting apparatus can include a substrate having first and second opposing surfaces, where at least one of the opposing surfaces is configured to mount devices thereon. A string of chip-on-board light emitting diode (LED) sets, can be on the first surface of the substrate and coupled in series with one another. An ac voltage source input, from outside the solid state lighting apparatus, can be coupled to the first or second surface of the substrate.