Abstract:
A method for the reuse of coal composition products and a resultant material are disclosed. The method generally utilizes the steps of heating a plastic component to a melting point, adding a predetermined quantity of coal combustion products to the melted plastic, mixing, and cooling the mixture to a solid state. Preferably the end product of the mixture is comprised of 75% recycled plastic and 25% coal combustion products.
Abstract:
A method for forming a graphene-reinforced polymer matrix composite is disclosed. The method includes distributing graphite microparticles into a molten thermoplastic polymer phase; and applying a succession of shear strain events to the molten polymer phase so that the molten polymer phase exfoliates the graphite successively with each event until at least 50% of the graphite is exfoliated to form a distribution in the molten polymer phase of single- and multi-layer graphene nanoparticles less than 50 nanometers thick along the c-axis direction.
Abstract:
This invention generally relates to transparent compositions containing a blend of poly(phenylene ether) and styrenic polymer, methods for their manufacture, and food packaging films and containers derived therefrom.
Abstract:
A method for manufacturing a rubber composition includes kneading a rubber component, an inorganic filler and a thioester-based silane coupling agent, and adding a vulcanizing agent and one or more compounds selected from the group of an imide compound and an N-oxyl compound to a mixture of the rubber component, the inorganic filler, and the thioester-based silane coupling agent such that the vulcanizing agent and the imide compound and/or the N-oxyl compound are kneaded with the mixture including the rubber component, the inorganic filler, and the thioester-based silane coupling agent.
Abstract:
Process for manufacturing a densified polymer powder comprising compressing a polymer feed that has a bulk density of less than or equal to 240 kg/m in a roll compactor comprising at least two compaction rolls to obtain a densified polymer material, wherein a gap between the two rolls is 0.5 to 10 mm, wherein the compaction rolls operate at a speed of 3 to 30 rpm, wherein an applied pressure of the roll compactor is 0.5 to 5 MPa, and milling the densified polymer material to obtain a densified polymer powder, wherein a bulk density of the densified polymer powder is greater than or equal to 250 kg/m3.
Abstract:
The present invention relates to a process for making a thermoplastic composition, comprising the steps of: a) melt mixing a first thermoplastic polymer and a paper product comprising a mixture of cellulose fibers and a second thermoplastic polymer.
Abstract:
Additives such as colorants may be incorporated into polymeric materials such as polyesters, such as in polyester fiber production, by use of a liquid formulation comprising colorant and a vehicle. The vehicle may comprise a functionalized pentaerythritol, trimethylolpropane or trimellitate. The liquid formulation is suitably contacted with the polymeric material in a melt processing apparatus.
Abstract:
A self-sealing elastomer composition that includes a diene elastomer, a hydrocarbon resin with a given softening temperature, and a liquid plasticizing agent, is manufactured according to a process that includes successive stages. In one stage, the hydrocarbon resin is incorporated in the diene elastomer by kneading the resin and the elastomer in a mixer at or up to a temperature referred to as “hot compounding” temperature, which is greater than the softening temperature of the resin, in order to obtain a masterbatch. In another stage, the liquid plasticizing agent is incorporated in the masterbatch by kneading the agent and the masterbatch in the same mixer or in another mixer, in order to obtain the self-sealing composition. The self-sealing composition then is formed dimensionally.
Abstract:
The present invention provides a polyamide resin composition comprising (A) a polyamide resin, (B) an aluminic acid metal salt, and (C) an organic acid, wherein the content of the aluminic acid metal salt (B) is larger than 0.6 parts by mass based on 100 parts by mass of the polyamide resin (A).
Abstract:
A process for the production of a polymer composition is disclosed. The polymer composition comprises an organopolysiloxane dispersed in a thermoplastic organic polymer liable to thermo-radical degradation or cross-linking when subjected to a high compounding energy at a temperature above its melting point. In a first step (I), a thermoplastic organic polymer and an organopolysiloxane are mixed at a temperature at which both the thermoplastic organic polymer and the organopolysiloxane are in liquid phases to form a masterbatch. In a second step (II), the masterbatch is mixed with further thermoplastic organic polymer to form a polymer composition having a lower concentration of organopolysiloxane than that in the masterbatch. In the first step (I), the thermoplastic organic polymer and the organopolysiloxane are mixed in the presence of an additive capable of inhibiting the thermo-radical degradation or cross-linking of the thermoplastic organic polymer. The organopolysiloxane of the masterbatch remains stable during processing.