Abstract:
A polymeric material having anisotropic properties, such as mechanical properties (e.g., modulus of elasticity), thermal properties, barrier properties (e.g., breathability), and so forth, is provided. The anisotropic properties can be achieved for a single, monolithic polymeric material through selective control over the manner in which the material is formed. For example, one or more zones of the polymeric material can be strained to create a unique network of pores within the strained zone(s). However, zones of the polymeric material that are not subjected to the same degree of deformational strain will not have the same pore volume, and in some cases, may even lack a porous network altogether.
Abstract:
A magnetic powder is obtained by removing a dispersion medium from a magnetic fluid that includes magnetic particles, a dispersant and the dispersion medium. A magnetic powder composition includes the magnetic powder and a resin material, and a magnetic powder composition molded body is obtained therefrom. A method of producing a magnetic powder includes removing a dispersion medium from a magnetic fluid containing magnetic particles, a dispersant and the dispersion medium, and powdering a solid component obtained by removing the dispersion medium. A method of producing a magnetic powder composition and a method of producing a magnetic powder composition molded product are also provided.
Abstract:
A biaxially oriented polyester film comprising polyester and at least one hydrolysis stabilizer selected from a glycidyl ester of a branched monocarboxylic acid, wherein the monocarboxylic acid has from 5 to 50 carbon atoms, wherein said hydrolysis stabilizer is present in the film in the form of its reaction product with at least some of the end-groups of said polyester, and wherein said reaction product is obtained by the reaction of the hydrolysis stabilizer with the end-groups of the polyester in the presence of a metal cation selected from the group consisting of Group I and Group II metal cations.
Abstract:
The invention relates to a method for producing a dispersion of nanoscale dicarboxylic acid salts, to the use of these dispersions for producing a compound, and to the use for producing films. The invention further relates to the use of the compounds for producing films.
Abstract:
A method for adding an additive into a polymer melt, preferably a polyester polymer melt such as polyethylene terephthalate (PET), comprising: a. discharging a polymer melt from a reactor to form a discharged polymer melt stream, and b. solidifying said discharged polymer melt stream, and c. prior to solidification, feeding a portion of the discharged polymer melt stream to a slipstream to form a slipstream polymer melt, and d. feeding an additive into said slipstream polymer melt to form an additive containing slipstream, and e. feeding the additive containing slipstream to a location upstream from the feed location forming said slipstream.
Abstract:
Disclosed is a production method of a thermoplastic resin composition comprising: compounding 0.001 to 50 parts by mass of a metal complex (B) with respect to 100 parts by mass of a thermoplastic resin (A), and kneading it under a condition of a kneading temperature of 225 to 300° C. and of a kneading time of 0.5 to 20 minutes, wherein a metal of the metal complex (B) is a metal except for zinc; a molded body obtained by molding the thermoplastic resin composition which is obtained by the production method; and a light emission body using the molded body.
Abstract:
Provided herein is technology relating to polymer nanocomposites, and particularly, but not exclusively, to polymer nanocomposites comprising two or more nanomaterials and methods of producing nanocomposites comprising two or more nanomaterials.
Abstract:
A method of forming particles that includes performing a strong force attenuation of a mixture to form pre-particles. The mixture including a base compound and a dielectric additive having an elevated dielectric constant dispersed therein. The pre-particles are then dielectrically spun in an electrostatic field to further attenuate the pre-particles and form the particles.
Abstract:
The present invention relates to a process for producing a polyester resin composition, including the step of mixing a polyester resin (A), an aromatic carbodiimide (B) and an aliphatic polycarbodiimide (C) at a temperature not lower than a melting temperature of the polyester resin, in which the polyester resin (A) and the aromatic carbodiimide (B) are mixed in the presence of the aliphatic polycarbodiimide (C).
Abstract:
A method for forming a graphene -reinforced polymer matrix composite is disclosed. The method includes distributing graphite microparticles into a molten thermoplastic polymer phase; and applying a succession of shear strain events to the molten polymer phase so that the molten polymer phase exfoliates the graphite successively with each event until at least 50% of the graphite is exfoliated to form a distribution in the molten polymer phase of single- and multi-layer graphene nanoparticles less than 50 nanometers thick along the c-axis direction.