Abstract:
The present invention concerns a plastic composition which is biodegradable, and which does not discharge contaminants during incineration or leave plastic fragments after decomposition. According to the invention the composition comprises: (i) 30-50% by weight of a polyester which is biodegradable and/or decayable; (ii) 20-40% by weight of starch from vegetable oil origin from corn, potatoes, and/or sunflower; (iii) 20-40% by weight of a filler composition comprising dolomite and/or calcium carbonate, wherein the filler composition particles have a polished surface; and (iv) 1-5% by weight of a binding agent comprising a resin ester of vegetable origin; wherein said polyester and said starch together form a bioplastic base composition and together comprise 55-79% by weight of the total weight of said plastic composition. The present invention further concerns a method for preparing said plastic composition; a plastic film prepared of said plastic composition; and a waste bag prepared of said plastic film.
Abstract:
Disclosed is an eco-friendly and high-strength resin composite material which has high-strength and light weight properties. The eco-friendly and high-strength resin composite material according to the present invention includes: a first base material; a reinforcing material layer formed on the first base material and having a fibrous reinforcement; and a second base material formed on the reinforcing layer. The first base material and/or the second base material are made with a biodegradable resin, such as the PLA and PHA resins.
Abstract:
The invention relates to a biodegradable material made of biological components, comprising 10 to 60 wt. % of a protein adhesive (1), which is made of at least one protein, and 2 to 50 wt. % of natural fibers (4). Furthermore, 2 to 15 wt. % of at least one hygroscopic mineral (7), 10 to 55 wt. % of water (2), and 0 to 50 wt. % of an additive component (5) are provided in the material (10).
Abstract:
This invention relates to a biodegradable polymer composition which is particularly suitable for use in the manufacture of articles having a high heat deflection temperature (HDT) by injection moulding and thermoforming.
Abstract:
The invention relates to novel internal fixation devices, such as bone plates, generally and novel craniomaxillofacial bone plates more specifically and systems for bonding the same. More specifically, the invention relates to bone plates made of a polymer blend of (poly)lactic acid and Ecoflex as well as a novel hot-melt adhesive polymer blend of the same material.
Abstract:
The present invention relates to a process for preparing a polymer/biological entities alloy, comprising a step of mixing a polymer and biological entities that degrade it, during a heat treatment, said heat treatment being performed at a temperature T above room temperature and said biological entities being resistant to said temperature T, characterized in that said biological entities are chosen from enzymes that degrade said polymer and microorganisms that degrade said polymer.
Abstract:
A rapidly degradable polyester polymer and its preparation methods and applications are disclosed. The polyester polymer of the present invention is made by poly-condensation of repeat structure units, each of which consists of a non-degradable block A and degradable block B. The polyester polymer not only has good machinery processing performance, but also can be quickly degraded in appropriate of environment, thereby effectively resolve the environment pollution problems resulted in the used of polyester polymers. It satisfies the wide application demands and especially ensures such polymer can be used for beverage bottle, food package films, shopping bags and other food package containers. In addition, the method of preparation in present invention is simple, low-cost, and the raw materials are easily obtainable at low price. It is suitable for volume production and has practical value and application potentials.
Abstract:
The invention relates to biocompatible, bioabsorbable derivatized non-crosslinked chitosan compositions optionally crosslinked to gelatin/collagen by 1-ethyl-3-[3-dimethylaminopropyl]carbodiimide hydrochloride (EDC) for biomedical use and methods of making and testing such compositions, including a modified acute systemic toxicity test. The compositions comprise derivatized chitosan reacetylated to a degree of N-deacetylation (DDA) of between about 15% and 40%. The compositions are typically bioabsorbed in about 90 days or less and can be made to bioabsorb at differing rates of speed. The compositions are initially soluble in aqueous solution below pH 6.5. The compositions have an acid content that can be adjusted between about 0% (w/w) and about 8% (w/w) to customize the composition for uses that require and/or tolerate differing levels of cytotoxicity, adhesion, composition cohesion, and cell infiltration into the composition.
Abstract:
Thus, the extrudable composition may comprise an extrudable composition having a heat deflection temperature greater than about 50° C. and a melting point between 80° C. to 190° C., the extrudable composition comprises 0 to 100% amorphous polylactic acid, 0 to 100% crystalline polylactic acid, 0.1 to 4% natural oil, 0.01 to 5% nanofibers, 0.05 to 8% cyclodextrin, 0 to 10% crystallinity agent, 0 to 1% starch-based melt rheology modifier, 0 to 1% polysaccharide crystallinity retarder, 0 to 1% natural wax, and 0 to 1% plasticizer.
Abstract:
Injection molded articles and process of forming the same are described herein. The processes generally include providing a polyolefin including one or more propylene heterophasic copolymers, the polyolefin having an ethylene content of at least 10 wt. % based on the total weight of the polyolefin; contacting the polyolefin with a polylactic acid and a reactive modifier to form a compatiblized polymeric blend, wherein the reactive modifier is produced by contacting a polypropylene, a multifunctional acrylate comonomer, and an initiator under conditions suitable for the formation of a glycidyl methacrylate grafted polypropylene (PP-g-GMA) having a grafting yield in a range from 1 wt. % to 15 wt. %; and injection molding the compatibilized polymeric blend into an article.