Abstract:
A system, method and apparatus for providing a printed circuit board having optimized power delivery planes and signal routing regions are disclosed. In one aspect, the present disclosure teaches a printed circuit board having two or more cores coupled together using a prepreg sheet having selected regions of increased permittivity. In combining the cores with the prepreg sheet, the regions of increased permittivity are preferably aligned with power delivery planes defined between respective cores. By increasing the permittivity within the power delivery planes, the greater the reduction in area of the cores needed for power delivery and the greater the area retained on the cores for providing signal routing. As a result, a printed circuit board incorporating teachings of the present disclosure may support more advanced and complex information handling system implementations.
Abstract:
An illumination assembly includes a compliant substrate comprising a first and second electrically conductive foil separated by an electrically insulating layer. The insulating layer includes a polymer material loaded with particles that enhance thermal conductivity of the insulating layer. A plurality of LED dies are disposed on the first conductive foil.
Abstract:
The present invention relates to a conductive pattern and a method for forming the conductive pattern, and more particularly, to a method for forming a conductive pattern, which comprises the steps of 1) preparing a substrate; 2) forming a first pattern by printing a first composition that includes an adhesion promoter and a solvent on the substrate; 3) forming a second pattern by printing a second composition that includes a conductive particle and a solvent on the first pattern; and 4) sintering the first pattern and the second pattern. The method for forming the conductive pattern according to the present invention may improve an adhesion property between a pattern and a substrate and may form a fine pattern having high resolution without formation of bank on a hydrophobic substrate.
Abstract:
A flexible circuit has a roll-molded thermoplastic resin base sheet with an integrally molded mounting structure located to receive a light emitting diode device in an illuminating position. The mounting structure is a pin receptacle constructed to receive a pin of the light emitting diode device. An electrically conductive portion is carried by the resin base and positioned for electric connection to conductors of the device. Another flexible circuit carries discrete integrated circuit chips and a field of fastener elements extending from a surface of a resin strip carrying conductive traces interconnecting the chips.
Abstract:
A flexible, low dielectric loss composition, used to fabricate a flexible substrate, is provided. The composition includes: SrTiO3 and/or Ba(Sr)TiO3 ceramic particle, with a particular size between 30 nm and 2 μm, in an amount of 20-80% by weight of the composition; at least one flexile macromolecule in an amount of 1.0-50% by weight of the composition, wherein the macromolecules have functional groups of hydroxyl group, carboxyl group, allyl group, amino group, or chain aliphatic epoxy group; and a thermosetting organic resin.
Abstract:
A flame-retardant epoxy resin composition, as well as an electronic device, a laminated circuit board, a multilayered circuit board and a printed circuit board employing the flame-retardant epoxy resin composition are disclosed. The flame-retardant epoxy resin composition contains: an epoxy resin; an epoxy resin curing agent; and flame-retardant particles containing a metal hydrate. The flame-retardant particles are provided with a coating layer on the surfaces thereof and have a volume average particle diameter in a range from 1 to 500 nm.
Abstract:
A resin composition characterized as containing (A) a synthetic resin having a melting temperature of 300° C. or above and (B) a platy inorganic filler incorporated in the resin and having the following properties; pH of aqueous dispersion: 5.5-6.0, amount of extracted alkalis: Na 30 ppm or below and K 40 ppm or below, maximum diameter a: 50 μm or below, thickness b: 1.0 μm or below, and aspect ratio (a/b): 20 or above.
Abstract translation:一种树脂组合物,其特征在于含有(A)熔融温度为300℃以上的合成树脂和(B)加入到树脂中的具有以下特性的板状无机填料; 水分散体的pH:5.5-6.0,提取碱的量:30ppm以下,K 40ppm以下,最大直径a:50μm以下,厚度b:1.0μm以下,纵横比(a / b ):20以上。
Abstract:
There is provided a constraining green including a first constraining layer having a surface disposed on the one of the top and bottom surfaces of the ceramic laminated body, the first constraining layer containing a first inorganic powder; and a second constraining layer disposed on a top of the first constraining layer and containing a second inorganic powder and a fly ash. The constraining green sheet serves to ensure less shrinkage of the ceramic laminated body and improve debinding characteristics.
Abstract:
Disclosed is a composition for forming a dielectric, which is applied to an embedded capacitor with a high dielectric constant, a capacitor produced using the composition, and a PCB provided with the capacitor. The composition includes 40 to 99 vol % of thermoplastic or thermosetting resin, and 1 to 60 vol % of semiconductive filler. Alternatively, the composition includes 40 to 95 vol % of thermoplastic or thermosetting resin, and 5 to 60 vol % of semiconductive ferroelectric substance. Furthermore, the present invention provides the capacitor, produced using the composition, and the PCB provided with the capacitor. Therefore, the dielectric, which is produced using the composition including the semiconductive filler or semiconductive ferroelectric substance, is advantageous in that the dielectric constant is high and a dielectric loss is low. The dielectric is usefully applied to produce an embedded capacitor with the high dielectric constant and the PCB provided with the embedded capacitor.