Abstract:
A multi-layer structure in a reaction cell for a diamond growth is provided. The multi-layer structure includes: a diamond seed; a first metal catalyst layer provided on the diamond seed, the first metal catalyst layer containing a first concentration of carbon; a second metal catalyst layer provided on the first metal layer, the second metal catalyst layer containing a second concentration of carbon that is higher than the first concentration; and a carbon source layer provided on the second metal layer.
Abstract:
There are provided sufficiently strong, hard, and heat resistant, dense and homogenous polycrystalline diamond applicable to cutting tools, dressers, dies and other working tools and excavation bits and the like, and a cutting tool having a cutting edge of the polycrystalline diamond. The polycrystalline diamond is formed substantially only of diamond formed using a composition of material containing a non diamond type carbon material, the composition of material being converted directly into diamond and sintered at ultra high pressure and ultra high temperature without aid of a sintering aid or a catalyst, and has a mixed microstructure having a fine crystal grain of diamond having a maximal grain size of at most 100 nm and an average grain size of at most 50 nm and a coarse crystal grain of diamond in the form of one of a platelet and a granule having a grain size of at least 50 nm and at most 10,000 nm.
Abstract:
Superabrasive tools and methods for the making thereof are disclosed and described. In one aspect, superabrasive particles are chemically bonded to a matrix support material according to a predetermined pattern by a braze alloy. The brazing alloy may be provided as a powder, thin sheet, or sheet of amorphous alloy. A template having a plurality of apertures arranged in a predetermined pattern may be used to place the superabrasive particles on a given substrate or matrix support material.
Abstract:
A diamond sintered body conventionally used in a cutting tool or the like includes an iron group metal element as a sintering aid, and therefore has a problem in heat resistance. A diamond sintered body not including the iron group metal, on the other hand, does not have sufficient mechanical strength to be used as a tool material, and also does not have conductivity, which makes electrical discharge machining impossible, and thus processing thereof is difficult. A diamond polycrystalline body having high heat resistance and mechanical strength and having conductivity enabling electrical discharge machining is obtained by using only an amorphous or fine graphite-type carbon material as a starting material, adding boron thereto and concurrently performing conversion into diamond and sintering in an ultra-high pressure and temperature condition.
Abstract:
A reagent delivering article comprising porous sintered polycrystalline diamond where the delivering article is capable of retaining at least one chemical reagent and releasing the chemical reagent in a fluid or has reactive sites on diamond surfaces of the article.
Abstract:
A polycrystalline superhard material comprises a sintered mass of superhard grains having a mean superhard grain contiguity of at least 62 percent and at most 92 percent. There is also disclosed a method of making such a polycrystalline superhard material. The method comprises providing a precursor body comprising superhard grains and interstices between the superhard grains, and introducing additive particles into the interstices to form a pre-sinter body. The pre-sinter body is submitted to a temperature and pressure at which superhard material is thermodynamically stable, sintering it and forming polycrystalline superhard material.
Abstract:
One object of the present invention is to provide a wire drawing die excellent in strength and wear resistance. The wire drawing die has a core formed using highly hard diamond polycrystalline body made substantially only of diamond and produced by directly converting a raw material composition including a non-diamond type carbon material into diamond and sintering the diamond at an ultra high pressure and an ultra high temperature without adding a sintering aid or a catalyst, the polycrystalline body having a mixed construction including fine-grained diamond crystals with a maximum grain size of less than or equal to 100 nm and an average grain size of less than or equal to 50 nm and plate-like or particulate coarse-grained diamond crystals with a minimum grain size of greater than or equal to 50 nm and a maximum grain size of less than or equal to 10000 nm.
Abstract:
A polycrystalline diamond cutting element for use in rock drilling or other operations that requires very high abrasion resistance with high transverse rupture strength at temperatures above 700 degrees centigrade. The cutting element includes a diamond layer that contains pre-sintered polycrystalline diamond agglomerate (PPDA) bonded to a supporting substrate. The PPDA can be made thermally stable and can be selected to produce a cutting element with any desired abrasion resistance characteristic without affecting internal stress.
Abstract:
A high pressure high temperature (HPHT) method for synthesizing single crystal diamond, wherein a single crystal diamond seed having an aspect ratio of at least (1) and a growth surface substantially parallel to a {110} crystallographic plane is utilized is described. The growth is effected at a temperature in the range from 1280° C. to 1390° C.
Abstract:
The present invention relates to an HPHT method for synthesizing single crystal diamond, wherein a single crystal diamond seed having an aspect ratio of at least 1.5 is utilized. Single crystal diamond seeds having an aspect ratio of at least 1.5 and synthetic single crystal diamond which may be obtained by the method recited are also described. The growth surface is substantially aligned along a or direction in the plane of the growth surface.