Abstract:
An ultrasonic transmitter includes a piezoelectric integrated thin film transistor (PITFT). The transistor includes a top gate electrode, a bottom gate electrode, and a piezoelectric layer. The piezoelectric layer generates vibrations in response to a voltage applied across the top gate electrode and the bottom gate electrode. The transistor includes micro-electrical-mechanical systems (MEMS) mechanically coupled to the PITFT. The MEMS includes a resonator that transmits ultrasonic pressure waves based on the vibrations.
Abstract:
There are provided a vibration generating apparatus and an electronic apparatus including the same. The vibration generating apparatus includes: a housing having an internal space; an elastic member having both ends fixed to the housing so as to be elastically deformably disposed in the internal space; and a piezoelectric element mounted on one surface of the elastic member, wherein power is supplied to the piezoelectric element so that warpage of the piezoelectric element is only generated toward any one of one surface of the elastic member and the other surface of the elastic member, a surface opposite to the one surface of the elastic member.
Abstract:
A piezoelectric element driving apparatus may apply a predetermined driving signal to a piezoelectric element to drive the piezoelectric element. The driving signal may be an asymmetrical waveform in which amplitudes of first and second polarities thereof are different from each other. An exemplary embodiment in the present disclosure may provide a piezoelectric element driving apparatus and method having a high output while protecting dielectric characteristics of a piezoelectric element by driving the piezoelectric element using an asymmetrical driving signal.
Abstract:
Phacoemulsification apparatus includes a phacoemulsification handpiece having a needle and an electrical system for ultrasonically vibrating said needle along with a power source for providing pulsed electrical power to the handpiece electrical system. Irrigation fluid is provided to the handpiece needle and aspirating fluid is removed from the handpiece needle. A determination of a voltage current phase relationship of the provided electrical power is made and in response thereto a control system varies a power level duty cycle provided to the handpiece electrical system from the power source and/or modify the aspiration flow rate. In addition, a separate input enables manual control of pulse amplitude. The control system provides a pulsed electrical power of less than 20 millisecond pulse duration.
Abstract:
An apparatus, system, and method for a Gigasonic Brush for cleaning surfaces is presented. One embodiment of the system includes an array of acoustic transducers coupled to a substrate where the individual acoustic transducers have sizes in the range of 9 um2 to 250,000 um2. The system may include a positioning mechanism coupled to at least one of a target surface or the array of acoustic transducers, and configured to position the array of acoustic transducers within 1 millimeter of a target surface. The system may also include a cleaning liquid supply arranged to provide cleaning liquid for coupling the array of acoustic transducers to the target surface. The system may further include a controller coupled to the array of acoustic transducers and configured to activate the array of acoustic transducers.
Abstract:
An electrical waveform generator for driving an electromechanical load includes a digital signal processor connected to a waveform generator component in turn connected to an amplifier section with a filter network, the latter being connected to sensing and conditioning circuit componentry that is in turn connected to analog-to-digital converter circuitry. A digital memory stores digitized voltage and current waveform information. The processor determines a phase difference between voltage and current waveforms, compares the determined phase difference to a phase difference command and generates a phase error or correction signal. The processor also generates an amplitude error signal for inducing the amplifier section to change its output amplitude to result in a predetermined amplitude error level for a respective one of the voltage and current waveforms.
Abstract:
A driving method for a piezoelectric vibrator including a driving piezoelectric element and a detection piezoelectric element formed of the same material as a material of the driving piezoelectric element, for driving the piezoelectric vibrator by applying, to the driving piezoelectric element, an alternating voltage having a frequency close to a resonance frequency of the piezoelectric vibrator, the driving method including, in the case where it is detected based on variations in output detected from the detection piezoelectric element that at least one of variations in mechanical resistance of the piezoelectric vibrator and variations in piezoelectric characteristic of a piezoelectric element have occurred, applying an alternating voltage adjusted in accordance with the variations in mechanical resistance of the piezoelectric vibrator and/or the variations in piezoelectric characteristic of the piezoelectric element, to thereby adjust an electrical input to the piezoelectric vibrator to suppress variations in vibration amplitude of the piezoelectric vibrator.
Abstract:
Disclosed is a piezoelectric actuator drive unit that includes a piezoelectric actuator drive amplifier and a piezoelectric actuator drive unit power supply. Combinations of high and low signal levels of a first control signal, which controls the supply voltage and amplifier bias voltage of the piezoelectric actuator drive amplifier, and a second control signal, which controls the driving force of the piezoelectric actuator drive amplifier, are associated with a haptic feedback function, a receiver function for generating an audio output, and a speaker function for generating music or the like. Thus, the piezoelectric actuator drive unit, which vibrates a piezoelectric actuator, is adapted to the haptic feedback function, the receiver function, and the speaker function, and can optimize its power and drive amplifier characteristics.
Abstract:
Phacoemulsification apparatus includes a phacoemulsification handpiece having a needle and an electrical system for ultrasonically vibrating said needle along with a power source for providing pulsed electrical power to the handpiece electrical system. Irrigation fluid is provided to the handpiece needle and aspirating fluid is removed from the handpiece needle. A determination of a voltage current phase relationship of the provided electrical power is made and in response thereto a control system varies a power level duty cycle provided to the handpiece electrical system from the power source and/or modify the aspiration flow rate. In addition, a separate input enables manual control of pulse amplitude. The control system provides a pulsed electrical power of less than 20 millisecond pulse duration.
Abstract:
Phacoemulsification apparatus includes a phacoemulsification handpiece having a needle and an electrical system for ultrasonically vibrating said needle along with a power source for providing pulsed electrical power to the handpiece electrical system. Irrigation fluid is provided to the handpiece needle and aspirating fluid is removed from the handpiece needle. A determination of a voltage current phase relationship of the provided electrical power is made and in response thereto a control system varies a power level duty cycle provided to the handpiece electrical system from the power source and/or modify the aspiration flow rate. In addition, a separate input enables manual control of pulse amplitude. The control system provides a pulsed electrical power of less than 20 millisecond pulse duration.