Abstract:
A suspended semiconductor film is anchored to a substrate at at least two opposed anchor positions, and film segments are deposited on the semiconductor film adjacent to one or more of the anchor positions to apply either tensile or compressive stress to the semiconductor film between the film segments. A crystalline silicon film may be anchored to the substrate and have tensile stress applied thereto to reduce the lattice mismatch between the silicon and a silicon-germanium layer deposited onto the silicon film. By controlling the level of stress in the silicon film, the size, density and distribution of quantum dots formed in a high germanium content silicon-germanium film deposited on the silicon film can be controlled.
Abstract:
A release layer composed of AlGaAs, a strain layer, a strain compensation layer composed of an InGaAs, and a component layer are formed on a GaAs substrate. The component layer includes a DBR film. A recess for defining a bent region is formed in the component layer. The component layer, the strain compensation layer, the strain layer, and the release layer are removed in an approximately U shape, thereby forming a groove. The release layer under the strain layer is selectively removed. The strain layer is bent at a region below the recess so as to relax strain caused by the difference in the lattice constant between the InGaAs layer and the GaAs layer, and the component layer stands perpendicularly to the GaAs substrate.
Abstract:
A release layer composed of AlGaAs, a strain layer, a strain compensation layer composed of an InGaAs, and a component layer are formed on a GaAs substrate. The component layer includes a DBR film. A recess for defining a bent region is formed in the component layer. The component layer, the strain compensation layer, the strain layer, and the release layer are removed in an approximately U shape, thereby forming a groove. The release layer under the strain layer is selectively removed. The strain layer is bent at a region below the recess so as to relax strain caused by the difference in the lattice constant between the InGaAs layer and the GaAs layer, and the component layer stands perpendicularly to the GaAs substrate.
Abstract:
A release layer composed of AlGaAs, a strain layer, a strain compensation layer composed of an InGaAs, and a component layer are formed on a GaAs substrate. The component layer includes a DBR film. A recess for defining a bent region is formed in the component layer. The component layer, the strain compensation layer, the strain layer, and the release layer are removed in an approximately U shape, thereby forming a groove. The release layer under the strain layer is selectively removed. The strain layer is bent at a region below the recess so as to relax strain caused by the difference in the lattice constant between the InGaAs layer and the GaAs layer, and the component layer stands perpendicularly to the GaAs substrate.
Abstract:
A device for use in a micro-electro-mechanical system (MEMS) optical device. The device includes a substrate having opposing first and second sides and a diffusion barrier layer formed over at least the first side. The device further includes a light reflective optical layer formed over the diffusion barrier layer on the first side of the substrate. The second side may desirably have a stress balancing layer located thereover.
Abstract:
A microelectronic reflector is fabricated by forming a first polysilicon layer on a microelectronic substrate, forming a first phosphosilicate glass (PSG) layer on the first polysilicon layer, and reactive ion etching to remove the first PSG layer from at least a portion of the first polysilicon layer. A second polysilicon layer is formed on at least a portion of the first polysilicon layer from which the first PSG layer was removed and a second PSG layer is formed on at least a second portion of the second polysilicon layer. Reactive ion etching is performed to remove the second PSG layer from at least a portion of the second polysilicon layer. A third PSG layer then is formed on at least a portion of the second polysilicon layer from which the second PSG layer was removed. Reactive ion etching is performed to remove the third PSG layer from at least a portion of the second polysilicon layer. By forming a third PSG layer, and reactive ion etching this layer, additional stress may be created in the first and/or second doped polysilicon layers that bends the ends of the doped first and/or second polysilicon layers towards the microelectronic substrate upon release of the treated polysilicon layer from the substrate, compared to doped polysilicon layers on which the third PSG layer was not formed and reactive ion etched. This increased stress may be counteracted by forming a stress-correcting layer on at least a portion of the second polysilicon layer from which the third PSG layer was removed, and then forming a reflective layer such as gold on at least a portion of the stress-correcting layer. The stress-correcting layer preferably comprises platinum, which can produce high stresses that can counteract the stresses in the first and second doped polysilicon layers, to thereby allow a flat mirror and/or beam to be produced.
Abstract:
A MEMS (Micro Electro Mechanical System) electrostatic device operated with lower and more predictable operating voltages is provided. An electrostatic actuator, an electrostatic attenuator of electromagnetic radiation, and a method for attenuating electromagnetic radiation are provided. Improved operating voltage characteristics are achieved by defining a non increasing air gap between the substrate electrode and flexible composite electrode within the electrostatic device. A medial portion of a multilayer flexible composite overlying the electromechanical substrate is held in position regardless of the application of electrostatic force, thereby sustaining the defined air gap. The air gap is relatively constant in separation from the underlying microelectronic surface when the medial portion is cantilevered in one embodiment. A further embodiment provides an air gap that decreases to zero when the medial portion approaches and contacts the underlying microelectronic surface. A moveable distal portion of the flexible composite is biased to curl naturally due to differences in thermal coefficients of expansion between the component layers. In response to electrostatic forces, the distal portion moves and thereby alters the distance separating the flexible composite from the underlying microelectronic surface. Structures and techniques for controlling bias in the medial portion and the resulting air gap are provided. The electrostatic device may be disposed to selectively clear or intercept the path of electromagnetic radiation. Materials used in the attenuator can be selected to pass, reflect, or absorb various types of electromagnetic radiation. A plurality of electromagnetic attenuators may be disposed in an array and selectively activated in subsets.
Abstract:
A method of making a X-ray mask including: a step of forming a X-ray absorber above a substrate; a step of controlling a stress of the X-ray absorber by a predetermined condition; and wherein the predetermined condition for controlling the stress of the X-ray absorber formed above the substrate is determined by a measured value of a stress of a X-ray absorber formed on a monitor substrate.
Abstract:
A double pinned micromachined sensor (11) which utilizes a laminated film (27) having overall tensile strength formed on top of a silicon substrate (16). The laminated film (27) comprises a layer of silicon nitride (18) encapsulated by two layers of polysilicon (19, 21), the silicon nitride (18) providing overall tension for the laminated film. The laminated film (27) is supported above the silicon substrate by support posts (17) and is selectively etched to form a sensor (11, 13).
Abstract:
Method for relieving stress in silicon microstructures by forming a silicide on the microstructures. Sensors comprising a stress-relieved silicon microstructure are also described.