Abstract:
An apparatus for remote inspection of fire extinguishers at one or a system of fire extinguisher stations includes, e.g., at each fire extinguisher station: a detector for lack of presence of a fire extinguisher in its installed position at the fire extinguisher station; a detector for out-of-range pressure of contents of the fire extinguisher at the fire extinguisher station; a detector for an obstruction to viewing of or access to the fire extinguisher at the fire extinguisher station; and a device for transmission of inspection report information from the fire extinguisher station to a remote central station.
Abstract:
A gas cylinder (100) in the neck (20) of which is installed a balanced valve (26). The valve is fitted in the outlet of the cylinder and its output emerges into a recess (22) which opens to the top surface (23) of the cylinder. Thus the valve is protected from physical damage. A thread (27) in the bore enables the attachment of fittings such as a regulator or a filling device (not shown) which cooperate with the valve (26) to control passage of gas from or into the cylinder.
Abstract:
The invention concerns a hydrogen storage installation for feeding fuel cell (11) in particular for motor vehicles, comprising a liquid hydrogen tank including a light insulation shell made of foam (2) incorporating at least one metal screen (3, 4), and a gaseous hydrogen discharge circuit (8) connected to the hydrogen input of the fuel cell (11) and having at least one portion (14; 13) in thermal exchange relationship with the screen (3, 4), the latter being likewise placed in thermal exchange relationship with the cold part (16) of an electrical refrigerating machine (15) supplied with electric current by the fuel cell (11). The invention is applicable to motor vehicles powered by electric power of a fuel cell.
Abstract:
Method for dispensing a gas comprising (a) providing a gas storage system containing pressurized gas and having at least first and second gas storage volumes, first and second flow control valves in flow communication with the first and second gas storage volumes, respectively, wherein each flow control valve is initially closed, and wherein the first gas storage volume has a smaller volumetric capacity than the second gas storage volume; (b) selecting a reference temperature; (c) measuring the ambient temperature; (d) providing a gas receiving vessel and placing it in flow communication with each flow control valve and with the gas storage system; and (e) initiating delivery of the gas by (i) opening the first flow control valve when the ambient temperature is equal to or greater than the reference temperature or (ii) opening the second flow control valve when the ambient temperature is less than the reference temperature.
Abstract:
A high-pressure tank is provided capable of simply and inexpensively suppressing gas leaks under low temperature condition. The high-pressure tank 10 comprises a tank main body 11 having the opening part 13, in which high-pressure gas is filled, and the reinforcement member 12 covering the outer surface of the tank main body 11 and reinforcing the tank main body 11. The tank main body 11 is provided with the outer projecting part 15 being uncovered with the reinforcement member 12 at a position different from the opening part 13. This outer projecting part 15 is heated from the outside of the tank main body 11 by the electric heater 30 to heat the tank main body 11, and thereby suppressing degradation of the sealing properties of the seal member 22.
Abstract:
A pressure container manufacturing method for manufacturing a pressure container by forming an outer shell made of a fiber reinforced composite material on a periphery of a liner, by: preparing a first fiber bundle which has a large diameter fiber bundle unimpregnated with a resin, and a second fiber bundle which has a small diameter fiber bundle and a thermoplastic resin covering the small diameter fiber bundle; forming a body on the periphery of the liner by braiding the first fiber bundle and the second fiber bundle with a braider; impregnating the first fiber bundle with the thermoplastic resin in the second fiber bundle which is heated and melted; and curing the thermoplastic resin to form the outer shell, wherein tension applied to the first fiber bundle is larger than tension applied to the second fiber bundle when forming the body and/or impregnating the thermoplastic resin.
Abstract:
A method for manufacturing a liner component includes the following five steps. First step of performing hot forging on an Al alloy material containing 0.4 to 1.2 mass % Si and 0.8 to 1.2 mass % Mg, the balance of the alloy material being Al and inevitable impurities, to thereby form a first intermediate product 11A including a dome-shaped portion 13 and a mouthpiece attachment portion 4A having a non-final shape. Second step of performing solution treatment on the first intermediate product 11A to thereby obtain a second intermediate product 11A. Third step of performing preliminary aging treatment on the second intermediate product 11A to thereby obtain a third intermediate product 11A. Fourth step of performing cold working on the mouthpiece attachment portion 4A of the third intermediate product 11A at a reduction ratio of 5 to 30% to thereby obtain a fourth intermediate product 11 in which the mouthpiece attachment portion 4A has a final shape. Fifth step of performing final aging treatment on the fourth intermediate product 11 to thereby obtain a final product. This method enables manufacture of a liner component which can reduce the weight and cost of a pressure vessel liner.
Abstract:
An apparatus for hand held inflating or deflating gas shocks or air bags is disclosed that is substantially hand held. A body comprises a high pressure valve, a lower pressure vent valve, and a pressurized plenum between the two valves. A high pressure gas source is connected tot the high pressure valve on one side. An object to be pressurized is connected to the other side to the lower pressure pressurized plenum. A gage is optionally available to monitor the pressure of the object to be pressurized. This device, which may fit into traditionally glove compartments and tool boxes, allows for quick and accurate pressurization of gas filled devices with pressure tunable characteristics. Although described here with a standalone highly pressurized gas source, a standard pressure disconnect can allow the device to be used with conventional tire inflation and deflation with an external pump supplying the high pressure source.
Abstract:
The invention relates to a hydraulic accumulator, in particular a bladder accumulator, comprising two at least partially adjacent plastic casings (12, 14). The first plastic casing (12) comprises a collar part (16) at least at one end thereof. The aim of the invention is to produce a leakproof accumulator arrangement which is economical to produce. To achieve this, a gap opening (24) between the casings (12, 14) extends up to a point, at which the casings (12, 14) are positioned together in a coaxial manner, and a disk valve (50) is provided as a valve for controlling the supply and discharge of the medium in the opening (10).
Abstract:
The present invention relates to a supplying type partial gas pressure structure, and more particularly to an unlimited supplying type partial gas pressure structure that contains a cylinder rack, whereas a multiple of supplying cylinders connected in series are installed on the cylinder rack; a transportation pipe with one end connected to the multiple supplying cylinders and the other end connected to a mixing processing cylinder and a converter in parallel; and another transportation pipe.