Abstract:
A transparent article includes a continuous polyester matrix having at least one incompatible filler dispersed therein. The incompatible filler provides domains in the polyester matrix, each domain having a particular dimension, thus providing a range of dimensions for the domains in the article. To create haze, the dimensions are within the range of from about 380 nm to about 720 nm. Once the range of dimensions is determined, a light absorbent composition can be found which absorbs light at a range of wavelengths that at least substantially covers the range of dimensions of the domains. In doing so, it has been found that the haze of the article can be substantially masked. Method for producing the article and for masking the haze are also provided.
Abstract:
It is an object of the present invention to provide a transparent resin molding having both high reflow heat resistance and excellent optical characteristics and to provide an optical lens and an optical film each including the transparent resin molding and having high heat resistance and excellent optical characteristics. A transparent resin molding according to the present invention is obtained by molding a molding material containing a thermoplastic resin and crosslinking the thermoplastic resin, in which the thermoplastic resin is selected from resins having an average transmissivity of 60% or more in the wavelength range of 600 to 1,000 nm when molded into a molding with a thickness of 2 mm, and the resin molding with a thickness of 2 mm has an average transmissivity of 60% or more in the wavelength range of 600 to 1,000 nm when the resin molding is heated at 200° C. for 10 minutes.
Abstract:
A transparent article includes a continuous polyester matrix having at least one incompatible filler dispersed therein. The incompatible filler provides domains in the polyester matrix, each domain having a particular dimension, thus providing a range of dimensions for the domains in the article. To create haze, the dimensions are within the range of from about 380 nm to about 720 nm. Once the range of dimensions is determined, a light absorbent composition can be found which absorbs light at a range of wavelengths that at least substantially covers the range of dimensions of the domains. In doing so, it has been found that the haze of the article can be substantially masked. Method for producing the article and for masking the haze are also provided.
Abstract:
The present invention provides a production process of a heat shrinkable film which is transparent, excellent in the balance of physical properties such as rigidity, elongation and shrink properties in both MD and TD, especially has a uniform film thickness and good stability in extrusion molding film while utilizing an inflation method; a block copolymer or hydrogenated product thereof, or a composition composed thereof excellent in tensile properties, optical properties, hardness, stretch properties, molding processability, shrink properties and solvent resistance and therefore suited for extrusion, injection molding and foams. The production process of a heat shrinkable film has a first inflation step of forming a tube having a thickness of from 0.05 to 0.5 mm by using a block copolymer having a vinyl aromatic hydrocarbon content of from 65 to 95 wt. % and a conjugated diene content of from 5 to 35 wt. %, or a hydrogenated product of the block copolymer; and a second inflation step, successively to the first inflation step, stretching the tube to from 1.5 to 5 times the original length in the TD in a fluid of from 65 to 100° C.
Abstract:
Disclosed are a binary random copolymer of propylene and ethylene, and a film to be formed by sheeting the copolymer. The film has good heat-sealability, high stiffness, good anti-blocking and slipping properties, and high transparency. As having excellent heat-sealability at low-temperature, the copolymer and its film are favorably used as sealant layers of laminate films.
Abstract:
Described is a transparent shrinkable film comprising a base layer prepared from propylene-containing polymers and a hydrocarbon resin. The base layer contains about 5 to 40% by weight of a propylene homopolymer, 0 to about 30% by weight of a hydrogenated hydrocarbon resin having a softening point in the range from about 80.degree. to 125.degree. C., and about 30 to 95% by weight of a random ethylene-propylene copolymer, the percentages being related to the total weight of the mixture. A top layer is arranged on either side of the base layer. The invention also describes a process for the manufacture of the film.
Abstract:
A transparent moulding composition comprising a bisphenol polycarbonate having a low refractive index due to a content of alkyl substitution and a rubber and/or a resin.
Abstract:
Polyester polymer compositions are described containing one or more nucleating agents and optionally reinforcing fibers. The polyester polymer, for instance, can be poly butylene terephthalate. The polymer composition is particularly formulated in order to be substantially transparent at specific wavelengths of light. Consequently, the polyester polymer composition is well suited for use in laser transmission welding in which a laser beam passes through the polymer composition and forms a weld on an adjoining surface. In one aspect, a black pigment masterbatch can be added to the composition for further improving the transparency properties.
Abstract:
Disclosed is a polymeric composition that can include at least 95 wt. % of a polypropylene copolymer, and 50 ppm to 2000 ppm of an aryl amide containing clarifying agent, a phosphate ester salt containing clarifying agent, or a combination thereof. The polymeric composition can have a haze value of A after being extruded once and a haze value of B after being extruded 2 times, wherein the ratio of A to B is 1 to 1.35, wherein A is less than 25%, and wherein A and B are determined in accordance with ASTM D1003, at a thickness of about 40 mil.