Abstract:
A display apparatus includes: a spectacle type frame mounted on a head portion of an observer; and an image display apparatus installed in the frame. The image display apparatus includes an image forming device, and an optical device allowing light output from the image forming device to be incident thereon, to be guided therein, and to be output therefrom. A dimmer which adjusts the amount of external light incident from the outside is disposed in an area of the optical device where the light is output. The dimmer includes a first transparent substrate and a second transparent substrate facing the first substrate, first and second electrodes which are mounted on the first and second substrates, respectively, and an electrolyte sealed between the first and second substrates and containing metal ions. The first electrode includes a conductive material of a fine line shape. The second electrode includes a transparent electrode layer.
Abstract:
A display apparatus includes: (i) a glasses-type frame that is mounted on the head of an observer; and (ii) an image display device that is attached to the frame, wherein the image display device includes (A) an image forming device, and (B) an optical device on which light emitted from the image forming device is incident, in which the light is guided, and from which the light is emitted, a light control device that adjusts an amount of external light incident from the outside is provided in a region of the optical device from which light is emitted, and the light control device includes two opposite transparent substrates, electrodes that are provided on the substrates, and an electrophoretic dispersion liquid that is sealed between the two substrates.
Abstract:
A semiconductor processing apparatus includes: a stage on which a substrate having a semiconductor film to be processed is to be mounted; a supply section that supplies a plurality of energy beams onto the semiconductor film mounted on the stage in such a way that irradiation points of the energy beams are aligned at given intervals; and a control section that moves the plurality of energy beams and the substrate relative to each other in a direction not in parallel to alignment of the irradiation points of the plurality of energy beams supplied by the supply section, and scans the semiconductor film with the irradiation points of the plurality of energy beams in parallel to thereby control a heat treatment on the semiconductor film.
Abstract:
Disclosed are a method of producing a crystalline semiconductor material capable of improving the crystallinity and a method of fabricating a semiconductor device using the crystalline semiconductor material. An amorphous film is uniformly irradiated with a pulse laser beam (energy beam) emitted from an XeCl excimer laser by 150 times so as to heat the amorphous film at such a temperature as to partially melt crystal grains having the {100} orientations with respect to the vertical direction of a substrate and melt amorphous film or crystal grains having face orientations other than the {100} orientations. Silicon crystals having the {100} orientations newly occur between a silicon oxide film and liquid-phase silicon and are bonded to each other at random, to newly form crystal grains having the {100} orientations. Such a crystal grain creation step is repeated, to form a crystalline film which has crystal grains preferentially grown in the {100} orientations with respect to the vertical direction of the substrate and thereby has sharp square-shaped crystal grain boundaries.
Abstract:
A thin film semiconductor device is provided that includes a semiconductor thin film and a gate electrode. The semiconductor thin film has an active region turned into a polycrystalline region through irradiation with an energy beam. The gate electrode is provided to traverse the active region. In a channel part that is the active region overlapping with the gate electrode, a crystalline state is changed cyclically in a channel length direction, and areas each having a substantially same crystalline state traverse the channel part.
Abstract:
A thin film semiconductor device is provided. The semiconductor device includes a semiconductor thin film configured to have an active region turned into a polycrystalline region through irradiation with an energy beam, and a gate electrode configured to be provided to traverse the active region. Successive crystal grain boundaries extend along the gate electrode in a channel part that is the active region overlapping with the gate electrode, and the crystal grain boundaries traverse the channel part and are provided cyclically in a channel length direction.
Abstract:
A method for making a thin-film semiconductor device includes an annealing step of irradiating an amorphous semiconductor thin film with a laser beam so as to crystallize the amorphous semiconductor thin film. In the annealing step, the semiconductor thin film is continuously irradiated with the laser beam while shifting the position of the semiconductor thin film irradiated with the laser beam at a predetermined velocity so that excess hydrogen can be removed from the region irradiated with the laser beam without evaporating and expanding hydrogen ions in the semiconductor thin film.
Abstract:
A method for making a thin-film semiconductor device includes an annealing step of irradiating an amorphous semiconductor thin film with a laser beam so as to crystallize the amorphous semiconductor thin film. In the annealing step, the semiconductor thin film is continuously irradiated with the laser beam while shifting the position of the semiconductor thin film irradiated with the laser beam at a predetermined velocity so that excess hydrogen can be removed from the region irradiated with the laser beam without evaporating and expanding hydrogen ions in the semiconductor thin film.
Abstract:
A method for making a thin-film semiconductor device includes an annealing step of irradiating an amorphous semiconductor thin film with a laser beam so as to crystallize the amorphous semiconductor thin film. In the annealing step, the semiconductor thin film is continuously irradiated with the laser beam while shifting the position of the semiconductor thin film irradiated with the laser beam at a predetermined velocity so that excess hydrogen can be removed from the region irradiated with the laser beam without evaporating and expanding hydrogen ions in the semiconductor thin film.
Abstract:
Disclosed are a method of producing a crystalline semiconductor material capable of improving the crystallinity and a method of fabricating a semiconductor device using the crystalline semiconductor material. An amorphous film is uniformly irradiated with a pulse laser beam (energy beam) emitted from an XeCl excimer laser by 150 times so as to heat the amorphous film at such a temperature as to partially melt crystal grains having the {100} orientations with respect to the vertical direction of a substrate and melt amorphous film or crystal grains having face orientations other than the {100} orientations. Silicon crystals having the {100} orientations newly occur between a silicon oxide film and liquid-phase silicon and are bonded to each other at random, to newly form crystal grains having the {100} orientations. Such a crystal grain creation step is repeated, to form a crystalline film which has crystal grains preferentially grown in the {100} orientations with respect to the vertical direction of the substrate and thereby has sharp square-shaped crystal grain boundaries.