Abstract:
Improved anisotropic fluid separation membranes are prepared from blends of polymers with surface energy differences. The membranes are formulated by processes wherein low surface energy polymer with desirable fluid separation and permeation characteristics is preferentially concentrated in the surface discriminating layer of the membrane.
Abstract:
The invention involves annular hollow fiber membrane bundle comprising a plurality of helically wound layers of semi-permeable hollow fibers helically wound thereon and at least one reinforcement filament which has been helically wound concurrently with said hollow fibers into the hollow fiber membrane bundle. A preferred embodiment provides that the reinforcement filament is uniformly distributed throughout the diameter of the bundle and/or across the axial length of the bundle. Though, other embodiments provide a non-uniform distribution throughout the diameter of the bundle and/or across the axial length of the bundle.
Abstract:
The invention relates to a hollow fiber membrane fluid separation assembly having an integral purge control valve or a purge fluid reflux system, which provides a sweep fluid port internal to the assembly. This assembly is useful for, among other things, separating water vapor from a gas stream.
Abstract:
Multilayer composite membranes are produced in a one-step coating process that provides an interior gas separation layer and an external defect sealing layer.
Abstract:
The present invention relates to composite membranes and membranes which are formed from modified poly(phenylene oxide) polymers having improved film forming properties and separation characteristics. The present invention further relates to poly(phenylene oxide) polymer and modified poly(phenylene oxide) polymer, having improved membrane forming characteristics and processes for producing the same.
Abstract:
Semipermeable membranes comprised of certain sulfonated substituted polysulfone polymers containing the polymer repeat unit (A) or (B) as herein defined. The invention also pertains to processes for using said membranes for the selective permeation of at least one gaseous component from a mixture of gases containing said gaseous component in admixture with other gaseous components.
Abstract:
Process for the dehydration of gases using composite permeable membranes, preferably hollow fiber composite membranes comprised of a porous support coated with an ultrathin layer of a defined sulfonated polysulfone or sulfonated polyether ketone. The processes also contemplate the use of a sweep or purge gas on the water-enriched permeate side of the composite membrane to increase the efficiency of the dehydration process.
Abstract:
Sulfonated hexafluoro bis-A-polysulfone membranes of polymers and copolymers having the repeat unit of the structure; ##STR1## in the polymer molecule that exhibit improved permeation and separation characteristics and processes for the use thereof for separation of a component from a fluid mixture of said component in admixture with other components.
Abstract:
Composite membranes are post-treated by contact with a volatile solvent, with or without minute amounts of additives, followed by solvent evaporation, to repair defects in the thin separation layer thereof.
Abstract:
Composite porous hydrophobic membranes are prepared by forming a perfluorohydrocarbon layer on the surface of a preformed porous polymeric substrate. The substrate can be formed from poly(aryl ether ketone) and a perfluorohydrocarbon layer can be chemically grafted to the surface of the substrate. The membranes can be utilized for a broad range of fluid separations, such as microfiltration, nanofiltration, ultrafiltration as membrane contactors for membrane distillation and for degassing and dewatering of fluids. The membranes can further contain a dense ultra-thin perfluorohydrocarbon layer superimposed on the porous poly(aryl ether ketone) substrate and can be utilized as membrane contactors or as gas separation. membranes for natural gas treatment and gas dehydration.