Abstract:
Transparent conductors and methods of forming same are provided. A transparent conductor can include a nanostructure layer and a low sheet resistance grid disposed on a transfer film surface having an acceptable level of surface roughness. The presence of the low sheet resistance grid lowers the sheet resistance of the transparent conductor to an acceptable level. After release of the transparent conductor from the transfer film, the surface roughness of the transparent conductor will be at least comparable to the surface roughness of the transfer film.
Abstract:
Disclosed herein are synthetic methods of producing silver nanowires with controlled morphology, as well as purifying the same. Also disclosed are coating solutions comprising populations of silver nanowires of certain length and diameter distributions.
Abstract:
Optical stacks containing one or more patterned transparent conductor layers may be damaged by electrostatic discharges that occur during the optical stack manufacturing process. Such damage may result in non-conductive conductors within the patterned transparent conductor layer. An electrostatic discharge protected optical stack may include a substrate layer, a first anti-static layer having a sheet resistance of from about 106 ohms per square (Ω/sq) to about 109 Ω/sq, and a patterned transparent conductor layer. Methods of testing and assessing damage to patterned transparent conductors are provided.
Abstract:
A method of forming monodispersed metal nanowires comprising: forming a reaction mixture including a metal salt, a capping agent and an ionic additive in a polar solvent at a first temperature; and forming metal nanowires by reducing the metal salt in the reaction mixture.
Abstract:
Various embodiments of the present disclosure are directed to structures comprising a nanostructure layer that includes a plurality of transparent conductors and coating layer formed on a surface thereof. In some embodiments, the coating layer includes one or more conductive plugs having outer and inner surfaces. The inner surface the plug is placed in electrical communication with the nanostructure layer and the outer surface forms conductive surface contacts proximate an outer surface of the coating layer. In some embodiments, the structure includes a polarizer and is used as a shielding layer in flat panel electrochromic displays, such as liquid crystal displays, touch panels, and the like.
Abstract:
The present disclosure relates to a method for improving optical qualities of transparent conductive films including a multilayer optical stack and conductive nanowires embedded therein.