Abstract:
A method of forming multiple gate oxide thicknesses on active areas that are separated by STI isolation regions on a substrate. A first layer of oxide is grown to a thickness of about 50 Angstroms and selected regions are then removed. A second layer of oxide is grown that is thinner than first growth oxide. For three different gate oxide thicknesses, selected second oxide growth regions are nitridated with a N2 plasma which increases the dielectric constant of a gate oxide and reduces the effective oxide thickness. To achieve four different gate oxide thicknesses, nitridation is performed on selected first growth oxides and on selected second growth oxide regions. Nitridation of gate oxides also prevents impurity dopants from migrating across the gate oxide layer and reduces leakage of standby current. The method also reduces corner loss of STI regions caused by HF etchant.
Abstract:
A strained channel MOSFET device with improved charge mobility and method for forming the same, the method including providing a first gate with a first semiconductor conductive type and second gate with a semiconductor conductive type on a substrate; forming a first strained layer with a first type of stress on said first gate; and, forming a second strained layer with a second type of stress on said second gate.
Abstract:
A strained channel MOSFET device with improved charge mobility and method for forming the same, the method including providing a first gate with a first semiconductor conductive type and second gate with a semiconductor conductive type on a substrate; forming a first strained layer with a first type of stress on said first gate; and, forming a second strained layer with a second type of stress on said second gate.
Abstract:
A method for forming a resist protect layer on a semiconductor substrate includes the following steps. An isolation structure is formed on the semiconductor substrate. An original nitride layer having a substantial etch selectivity to the isolation structure is formed over the semiconductor substrate. A photoresist mask is formed for partially covering the original nitride layer. A wet etching is performed to remove the original nitride layer uncovered by the photoresist mask in such a way without causing substantial damage to the isolation structure. As such, the original nitride layer covered by the photoresist mask constitutes the resist protect layer.
Abstract:
A semiconductor device and method for forming the same for improving charge mobility in NMOS and PMOS devices simultaneously, the method including forming a first dielectric layer including a stress type selected from the group consisting of tensile stress and compressive stress over the respective PMOS and NMOS device regions; removing a portion of the first dielectric layer overlying one of the PMOS and NMOS device regions; forming a second dielectric layer including a stress type opposite from the first dielectric layer stress type over the respective PMOS and NMOS device regions; and, removing a portion of the second dielectric layer overlying one of the PMOS and NMOS device regions having an underlying first dielectric layer to form a compressive stress dielectric layer over the PMOS device region and a tensile stress dielectric layer over the NMOS device region.
Abstract:
A strained channel MOSFET device with improved charge mobility and method for forming the same, the method including providing a first gate with a first semiconductor conductive type and second gate with a semiconductor conductive type on a substrate; forming a first strained layer with a first type of stress on said first gate; and, forming a second strained layer with a second type of stress on said second gate.
Abstract:
Within a method for forming a silicon layer, there is employed at least one sub-layer formed of a higher crystalline silicon material and at least one sub-layer formed of a lower crystalline silicon material. The lower crystalline silicon material is formed employing a hydrogen treatment of the higher crystalline silicon material. The method is particularly useful for forming polysilicon based gate electrodes with enhanced dimensional control and enhanced performance.
Abstract:
A method of fabricating a gate structure for a MOSFET device, allowing a reduced polysilicon depletion effect as well as increased carrier mobility to be realized, has been developed. The method features a polysilicon-germanium component of the gate structure, sandwiched between an underlying polysilicon seed layer and an overlying polysilicon cap layer. The inclusion of germanium in the deposited polysilicon-germanium component results in enhanced dopant activation and thus a reduced polysilicon depletion effect. The polysilicon seed and cap layers are subjected to low temperature, anneal procedures, performed in situ in a hydrogen ambient, after deposition of the polysilicon layers. The in situ anneal procedures alters the columnar grains of the polysilicon layers to small, random grains resulting in smooth polysilicon surfaces, with the smooth surface of the polysilicon seed layer interfacing the underlying gate insulator layer resulting in enhanced carrier mobility when compared to counterpart polysilicon seed layer comprised with rough surfaces.
Abstract:
A lamp power assembling structure and method, the lamp power assembling structure is installed indoors and is connected an indoor power source, and includes a lamp power seat and a lamp fixing seat. The lamp power seat has a first power connector for connecting to the indoor power source and two sliding trenches. Each sliding trench has an arced channel and an enlarged hole formed at an end of the arced channel. The lamp fixing seat has a second power connector corresponding to the first power connector and two fasteners separately corresponding to the two enlarged holes. The two fasteners are separately inserted into the two enlarged holes, and the lamp fixing seat is rotated about the first and second power connectors so as to make the two fasteners separately to be engaged with the arced channels to fix the lamp fixing seat to the lamp power seat.
Abstract:
A socket contains: a body, a push member, and a reverse pushing structure. The body includes a connecting section and a fitting section, the connecting section has a first polygonal orifice configured to accommodate a socket wrench, and the fitting section has a second polygonal orifice for driving a fastener element. The body includes a receiving groove defined therein communicating with the second polygonal orifice, and the push member is movably accommodated in the second polygonal orifice and includes at least one magnetic attraction element. The reverse pushing structure is housed in the receiving groove and configured to push the push member toward the rim of the second polygonal orifice.