Abstract:
A light emitting device package structure is described. The light emitting device package structure includes a substrate serving as a carrier supporting a light emitting device chip. The substrate and the light emitting device chip have a chip side and a substrate side separately. A first electrode layer is disposed on a first surface of the light emitting device chip and a second electrode layer is disposed on a second surface of the light emitting device chip, in which the first surface and the second surface are not coplanar. A first conductive trace is electrically connected to the first electrode layer and a second conductive trace is electrically connected to the second electrode layer. At least the first conductive trace or the second conductive trace is formed along the chip side and the substrate side simultaneously.
Abstract:
Described are semiconductor package devices with improved reliability and methods of manufacturing thereof. In one embodiment, a package device is disclosed that includes a chip having an active surface and a coupling surface opposite the active surface, where the chip has one or more integrated circuits and bumps. The device also includes a thermal spreader thermally coupled to the coupling surface of the chip for dissipating heat generated by the chip, and a thermal interface material located between the thermal spreader and the coupling surface of the chip for improving the heat dissipation. In addition, the device also includes a boundary material located between the thermal spreader and the coupling surface of the chip, where the boundary material is configured to surround a perimeter of the thermal interface material to maintain the thermal interface material between the thermal spreader and the coupling surface of the chip.
Abstract:
Described are semiconductor package devices with improved reliability and methods of manufacturing thereof. In one embodiment, a package device is disclosed that includes a chip having an active surface and a coupling surface opposite the active surface, where the chip has one or more integrated circuits and bumps. The device also includes a thermal spreader thermally coupled to the coupling surface of the chip for dissipating heat generated by the chip, and a thermal interface material located between the thermal spreader and the coupling surface of the chip for improving the heat dissipation. In addition, the device also includes a boundary material located between the thermal spreader and the coupling surface of the chip, where the boundary material is configured to surround a perimeter of the thermal interface material to maintain the thermal interface material between the thermal spreader and the coupling surface of the chip.
Abstract:
Described are semiconductor package devices with improved reliability and methods of manufacturing thereof. In one embodiment, a package device is disclosed that includes a chip having an active surface and a coupling surface opposite the active surface, where the chip has one or more integrated circuits and bumps. The device also includes a thermal spreader thermally coupled to the coupling surface of the chip for dissipating heat generated by the chip, and a thermal interface material located between the thermal spreader and the coupling surface of the chip for improving the heat dissipation. In addition, the device also includes a boundary material located between the thermal spreader and the coupling surface of the chip, where the boundary material is configured to surround a perimeter of the thermal interface material to maintain the thermal interface material between the thermal spreader and the coupling surface of the chip.