Abstract:
An exterior rearview mirror assembly of the present invention, includes a lamp module with light sources functioning as a turn signal indicator, a security light, and a blind spot indicator. The light module may include at least one LED device that is activated during different activation modes so as to operate in two or more of the following modes: a blind spot indication mode, a turn signal mode, and a security light mode. The LED device may emit light of different color during the different modes of operation. The security light may be oriented to illuminate the door handle and keyhole. The light module may be positioned behind the mirror element to project light through the mirror element.
Abstract:
The present invention relates to improved optical structures, related manufacturing processes and assemblies incorporating the improved optical structures. In at least one embodiment accurate light source color information is provided throughout substantially the entire associated field of view.
Abstract:
A notification appliance configured to emit a notification output based upon at least one detected environmental condition is provided that includes a sensor configured to detect the at least one environmental condition, at least one light emitting diode (LED) light source configured to emit light having an intensity during a pulse time period, and a controller in communicative connection with the sensor and the LED light source, wherein the controller is configured to control the LED light source so that the pulse time period is approximately less than or equal to two hundred milliseconds (200 ms), while substantially maintaining an effective intensity and enhancing a perceived brightness of the emitted light.
Abstract:
An outside mirror lighting assembly (100) and method includes a housing (108) and a first glass panel (101) where one or more light emitting devices (107) are positioned at an edge of the first glass panel (101). Light rays from the at least one light emitting device (107) propagate within the glass panel for illumining its outer periphery. Words, logos, or other indicia (125) may be also be illuminated by direct or indirect light emitted into an etched area of the glass. The mirror assembly supplies a soft illuminated glow around the outer periphery and/or the indicia for proving a unique and pleasing appearance to the user.
Abstract:
Improved light emitting optics systems are provided for obtaining desired illumination patterns. Illumination assemblies and systems are provided that incorporate improved light emitting optics systems.
Abstract:
A notification appliance configured to emit a notification output based upon at least one detected environmental condition is provided that includes a sensor configured to detect the at least one environmental condition, at least one light emitting diode (LED) light source configured to emit light having an intensity during a pulse time period, and a controller in communicative connection with the sensor and the LED light source, wherein the controller is configured to control the LED light source so that the pulse time period is approximately less than or equal to two hundred milliseconds (200 ms), while substantially maintaining an effective intensity and enhancing a perceived brightness of the emitted light.
Abstract:
The present invention relates to improved optical structures, related manufacturing processes and assemblies incorporating the improved optical structures. In at least one embodiment accurate light source color information is provided throughout substantially the entire associated field of view.
Abstract:
The present invention relates to improvements in controlling the direction of light rays. Various assemblies incorporating these inventive concepts are provided.
Abstract:
The optical system of the present invention includes a lens system assembly, a spectral filter material and a pixel array configured such that small, distant, light sources can be reliably detected. The optical system of the present invention provides accurate measurement of the brightness of the detected light sources and identification of the peak wavelength and dominant wavelength of the detected light sources. Use of the optical system of the present invention provides the ability to distinguish headlights of oncoming vehicles and taillights of leading vehicles from one another, as well as, from other light sources.