Abstract:
A parallel eccentric electro-mechanical actuator provides motive power and includes an electric prime mover that drives the reducer's pinion gear. This pinion drives minimum three star gears with stationary shaft bearings. Each shaft contains an eccentric which are completely in parallel with each other. These eccentrics can be thought of as parallel/in-phase driven crankshafts. Each eccentric drives the parallel eccentric (PE) gear through a bearing. The PE gear exhibits a circular motion (without rotation) which in itself is unbalanced. The crankshafts have another eccentric which create an opposite inertia force to balance that of the PE gear. The PE gear contains an external toothed gear on its periphery. It meshes with the internal teeth of the output ring gear. The relative motion between the PE gear and the ring gear is that the PE gear rolls inside the ring gear. This relative motion is called hypo-cycloidal motion.
Abstract:
A method for providing a compact rotary action torque within a larger system comprising a cross-roller bearing, generating a controllable electromagnetic field using a motor stator while interfacing the cross-roller bearing using a bull gear. The bull gear interfaces the cross-roller bearing and includes gear-teeth. An output plate includes a ring gear and supports shaft bearings. The ring gear interfaces the output plate and includes gear-teeth. A drive shaft holds a prime mover rotor and an eccentric and associates with the output plate via the shaft bearings. A gear train includes a meshing gear having gear-teeth for meshing with the gear-teeth of the bull gear and the gear-teeth of the ring gear and walks a minimal number of the gear-teeth for each rotation of the prime mover rotor; thereby, providing a transmitting force from the prime mover along the shortest-possible transmission path.
Abstract:
A parallel eccentric electro-mechanical actuator provides motive power and includes an electric prime mover that drives the reducer's pinion gear. This pinion drives minimum three star gears with stationary shaft bearings. Each shaft contains an eccentric which are completely in parallel with each other. These eccentrics can be thought of as parallel/in-phase driven crankshafts. Each eccentric drives the parallel eccentric (PE) gear through a bearing. The PE gear exhibits a circular motion (without rotation) which in itself is unbalanced. The crankshafts have another eccentric which create an opposite inertia force to balance that of the PE gear. The PE gear contains an external toothed gear on its periphery. It meshes with the internal teeth of the output ring gear. The relative motion between the PE gear and the ring gear is that the PE gear rolls inside the ring gear. This relative motion is called hypo-cycloidal motion.
Abstract:
A wind turbine is provided. The wind turbine comprises a blade; a shaft which rotates in response to the rotation of said blade; a generator; and a star compound gear train disposed between said shaft and said generator.
Abstract:
A rotary actuator (101) is provided which includes a crankshaft (103), first and second eccentric gears (121), first and second end plates (123), a first crosslink (117) which is disposed between the first eccentric gear and the first end plate, a second crosslink which is disposed between the second eccentric gear and the second end plate, a stator (113) disposed between the first and second eccentric gears, and a rotor (109). Preferably, the rotary actuator further includes first and second support plates (115) which are disposed concentrically about the crankshaft and which are attached to first and second surfaces of the stator, respectively. The foregoing configuration allows the stator to serve as a major structural element, which may enhance the stiffness and reduce the weight of the actuator, while simplifying many of its active components.
Abstract:
A rotary actuator (101) is provided which includes a crankshaft (103), first and second eccentric gears (121), first and second end plates (123), a first crosslink (117) which is disposed between the first eccentric gear and the first end plate, a second crosslink which is disposed between the second eccentric gear and the second end plate, a stator (113) disposed between the first and second eccentric gears, and a rotor (109). Preferably, the rotary actuator further includes first and second support plates (115) which are disposed concentrically about the crankshaft and which are attached to first and second surfaces of the stator, respectively. The foregoing configuration allows the stator to serve as a major structural element, which may enhance the stiffness and reduce the weight of the actuator, while simplifying many of its active components.
Abstract:
A rotary actuator is provided which includes a prime mover including a rotor and a stator; a front-end star compound gear equipped with a first pinion, a first plurality of star gears arrayed concentrically around said first pinion, a first clutch, a first clutch shift motor, an output shaft, and first, second and third gears, wherein said third gear is attached to said output shaft; a back-end star compound gear; and a wheel interface including a principal bearing and a brake disk. The first pinion drives said the clutch. The first clutch shift motor shifts the first clutch between a first position in which the first clutch engages the first gear, and a second position in which the first clutch engages the second gear. When the first clutch engages the first gear, the first gear drives the first plurality of star gears. When the first clutch engages the first gear, the first plurality of star gears drive the third gear, or the first clutch engages the third gear to drive the output shaft directly.
Abstract:
An engine and gear train combination is provided which includes an engine which drives a first crankshaft having a first gear disposed thereon; a second crankshaft having a second gear and a flywheel disposed thereon, wherein the second gear meshes with the first gear; and a pulse compensator having a central element which is pivotally connected on a first end thereof to a first set of lateral members and which is pivotally connected on a second end thereof to a second set of lateral elements. Each element of the first set of lateral elements is also pivotally connected to the second crankshaft, and each element of the second set of lateral elements is pivotally connected to a mount.
Abstract:
A parallel eccentric electro-mechanical actuator provides motive power and includes an electric prime mover that drives the reducer's pinion gear. This pinion drives minimum three star gears with stationary shaft bearings. Each shaft contains an eccentric which are completely in parallel with each other. These eccentrics can be thought of as parallel/in-phase driven crankshafts. Each eccentric drives the parallel eccentric (PE) gear through a bearing. The PE gear exhibits a circular motion (without rotation) which in itself is unbalanced. The crankshafts have another eccentric which create an opposite inertia force to balance that of the PE gear. The PE gear contains an external toothed gear on its periphery. It meshes with the internal teeth of the output ring gear. The relative motion between the PE gear and the ring gear is that the PE gear rolls inside the ring gear. This relative motion is called hypo-cycloidal motion.
Abstract:
A robotic system providing precision interfaces between a rotary actuator and a robotic structure. The robotic structure responsive to control by a rotary actuator via a connection means whereby interface design parameters are relayed to the rotary actuator. The rotary actuator for controlling the robotic structure includes an actuator shell, an eccentric cage and a primer mover portion, rigidly attached to the eccentric cage and capable of exerting a torque on a first prime mover. A cross-roller is also included having a first bearing portion rigidly fixed to the actuator shell and a second bearing portion, an output attachment plate attached to a second bearing portion, a shell gear rigidly attached to the actuator shell, an output gear attached to the output attachment plate and an eccentric gear attached to the eccentric cage.