Abstract:
The invention is directed to carbon fibers having high tensile strength and modulus of elasticity. The invention also provides a method and apparatus for making the carbon fibers. The method comprises advancing a precursor fiber through an oxidation oven wherein the fiber is subjected to controlled stretching in an oxidizing atmosphere in which tension loads are distributed amongst a plurality of passes through the oxidation oven, which permits higher cumulative stretches to be achieved. The method also includes subjecting the fiber to controlled stretching in two or more of the passes that is sufficient to cause the fiber to undergo one or more transitions in each of the two or more passes. The invention is also directed to an oxidation oven having a plurality of cooperating drive rolls in series that can be driven independently of each other so that the amount of stretch applied to the oven in each of the plurality of passes can be independently controlled.
Abstract:
The invention is directed to carbon fibers having high tensile strength. The invention also provides a method and apparatus for making the carbon fibers. The method comprises advancing a precursor fiber through a plurality of passes through an oxidation oven, where stretching during the initial passes is minimized or eliminated entirely, or made negative, followed by controlled stretching over a series of passes, using rollers of increasing speed.
Abstract:
Provided are sizing compositions, and more particularly, sizing compositions comprising an epoxy and a carboxylate salt of an amine compound for the treatment of carbon fiber. The structure of the amine used to make the carboxylate salts is RnXmQ, wherein Q is an amine-containing group, X is a polyether group, and R is an aryl or alkyl group, either linear or branched, saturated or unsaturated, or a combination thereof. m and n are integers greater than or equal to 0. The compositions reduce or eliminate sheen and luster on carbon fibers in finished goods. Carbon fiber-reinforced composite materials and carbon fibers incorporating said sizing compositions are also provided.
Abstract:
Pre-impregnated composite material (prepreg) that can be cured/molded to form aerospace composite parts. The prepreg includes carbon reinforcing fibers and an uncured resin matrix. The resin matrix includes an epoxy resin component, polyethersulfone as a toughening agent, a thermoplastic particle component, a nanoparticle component and a curing agent.
Abstract:
A method for making carbon fiber in which the tensile strength of carbon fiber is increased without dehumidifying the ambient air that enters every oxidation oven in a multiple oxidation oven system. A positive effect on tensile strength is provided when ambient air entering only the first oven in a series of oxidation ovens is dehumidified. In addition, the ambient air entering the last oven is not dehumidified when one or more of the preceding oxidation ovens is operated with dehumidified air.
Abstract:
Pre-impregnated composite material (prepreg) that can be cured/molded to form aerospace composite parts. The prepreg includes carbon reinforcing fibers and an uncured resin matrix. The resin matrix includes an epoxy resin component, polyethersulfone as a toughening agent, a thermoplastic particle component, a nanoparticle component and a curing agent.
Abstract:
Provided is a composition for the treatment of fibers, such as PAN precursor fibers. The finish composition includes a polysiloxane; an emulsifier; water; and a dicarboxylic acid having a pKa from 1 to 4, and boiling point from 200 to 400° C. The dicarboxylic acid may have the following formula: where R1 is absent or a saturated or unsaturated, linear or branched, aromatic substituted or unsubstituted, hydrocarbon group; Y1 and Y2 are independently hydrogen, nitrogen, oxygen, sulfur, phosphorus, C1-C6 alkyl group, or an alkoxy group; and X1 and X2 are independently one or more hydrogen atoms, a metal, a quaternary amine, or a hydrocarbon group having up to 6 carbon atoms, the hydrocarbon group being an alkyl group, an alkylene group, or an aromatic group, which may be branched or linear, and may optionally have one or more heteroatoms selected from the group consisting of nitrogen, oxygen, sulfur and phosphorus.
Abstract:
Pre-impregnated composite material (prepreg) that can be cured/molded to form aerospace composite parts. The prepreg includes carbon reinforcing fibers and an uncured resin matrix. The resin matrix includes an epoxy component, polyethersulfone as a toughening agent, and a curing agent. The resin matrix is also composed of a thermoplastic particle component that includes hybrid polyamide particles wherein each hybrid particle contains a mixture of amorphous and semi-crystalline polyamide.
Abstract:
Amino benzoates have been found to be useful curing agents for epoxy resins particularly para amino benzoates containing at least two primary amine groups and at least two carboxyl moieties, the amino benzoates are particularly useful as curatives in prepregs.
Abstract:
A powder composition suitable for use in laser sintering for printing a three-dimensional object. The powder composition includes a polyaryletherketone (PAEK) powder having a plurality of particles. The plurality of particles having a mean diameter of D50. The composition includes a plurality of carbon fibers having a mean length L50. L50 is greater than D50. The particles are substantially non-spherical. A portion of the carbon fiber is embedded into the particle via high intensity mixing.