Abstract:
A drilling machine tool is disclosed having a machine tool body with a movable frame which is movable in the three axial directions X, Y and Z, of a rectangular coordinate system. The tool includes a working head provided on said movable frame, said head having at least one drilling spindle thereon, wherein said X direction is the direction in which said movable frame advances to and retreats from a workpiece at the general level of the workpiece, said Y direction is perpendicular to the X direction and said Z direction is generally up and down and is perpendicular to both said X and Y directions; X, Y and Z shafts corresponding to X, Y and Z directions, respectively, each shaft operatively connected with said movable frame for moving said frame in the X, Y and Z directions; a plurality of driving sources, one each corresponding with each of said shafts and operatively connected thereto for driving said shafts; and wherein said frame is movable such that said spindle is operable when inclined with respect to the X axis as well as when said spindle is parallel to the X axis, and said frame is driven along the axial centerline of said spindle in response to said driving sources.
Abstract:
In polymerizing an olefin, for example, in a polymerization reactor with a reflux condenser, a gas mixture withdrawn from the polymerization reactor is first washed before it reaches the heat transfer surface of the reflux condenser to remove active catalyst particles and polymer particles entrained therein and then condensed to obtain a condensed liquid, and the condensed liquid is returned to the polymerization reactor whereby the heat generated in the polymerization reactor is efficiently removed without causing any clogging of pipes, etc.
Abstract:
An information processing device includes: a display device; a pointing device; a cursor display unit that displays a cursor on a screen of the display device in accordance with operations of the pointing device; a first acquisition unit that acquires position information indicating a position, on the screen, of a function handle to which a function of processing a user interface object is assigned and which is displayed on the screen of the display device; and a position changing unit that changes a display position of the cursor such that the cursor on the screen is at the position indicated by the position information acquired by the first acquisition unit, in response to commands inputted via a specific switch.
Abstract:
It is judged whether the abnormal current is due to the electric leakage or not by a detection step detecting the abnormal current by the leakage current detection board and comparing a threshold value of predetermined items stored in a storing unit and actual values corresponding to the items at the time of when a compressor is stopped by detecting the abnormal current in the detection step. Specifically, the abnormal current is recognized as the electric leakage to be displayed on a display unit when at least one of the operating time at the time of detecting the abnormal current, the inner pressure of a motor, and a discharge pipe temperature is lower than the corresponding threshold value.
Abstract:
An imaging apparatus comprises an imaging element, an imaging optical system configured to input an image of an object to the imaging element, a non-volatile memory part for storing defect data concerning the imaging element, and includes a first memory area storing initial defect data concerning the imaging element, and a second memory area different from the first memory area, a defect detection part for detecting defect data concerning the imaging element, and a control part for controlling reading and writing of the defect data on the imaging element from and to the non-volatile memory part, the control part writing, to the second memory area, defect data detected by the defect detection part.
Abstract:
An automatic exposure (“AE”), control apparatus to prevent exposure errors resulting from “smear.” Image-capturing is performed at a single exposure time TI (I=1, 2, . . . n); a CCD output is applied with a CCD drive signal to perform an integrating operation for a signal in an AE area using an integration circuit, and then outputs integration value EI+SI at each exposure time. A shutter trigger operation presents readout of an exposure value. An integrator value En+Sn obtained just before the shutter trigger operation, and a smear value Sn′ obtained just after the shutter trigger operation are provided to an exposure operation/control circuit. The exposure operation/control circuit then performs an AE operation to receive En+Sn−Sn≈En and compares the value to a target value for determining exposure conditions, and provides an AE operation value containing almost no smear component to determine an appropriate exposure condition.
Abstract:
An automatic exposure (“AE”), control apparatus to prevent exposure errors resulting from “smear.” Image-capturing is performed at a single exposure time TI (I=1, 2, . . . n); a CCD output is applied with a CCD drive signal to perform an integrating operation for a signal in an AE area using an integration circuit, and then outputs integration value EI+SI at each exposure time. A shutter trigger operation presents readout of an exposure value. An integrator value En+Sn obtained just before the shutter trigger operation, and a smear value Sn′ obtained just after the shutter trigger operation are provided to an exposure operation/control circuit. The exposure operation/control circuit then performs an AE operation to receive En+Sn−Sn≈En and compares the value to a target value for determining exposure conditions, and provides an AE operation value containing almost no smear component to determine an appropriate exposure condition.
Abstract:
A signal processing apparatus includes a lens, an image sensing device placed on an imaging plane of the lens, and a limb darkening correction section which corrects limb darkening only in the horizontal direction of the image sensing device with respect to a video signal of an object sensed by the image sensing device.
Abstract:
A tool for grinding and polishing diamond and a method for polishing diamond in which a single crystal diamond, a diamond thin film, a sintered diamond compact and the like can be polished at low temperatures without causing cracks, fractures or degradation in quality therein. The tool and method provide a polishing operation which is easy to accomplish, provides stable polishing quality, and provides decreased costs while maintaining stable grinder performance. The grinder is formed of a main component which is an intermetallic compound consisting of one kind or more of elements selected from the group of Al, Cr, Mn, Fe, Co, Ni, Cu, Ru, Rh, Pd, Os, Ir and Pt and one kind or more of elements selected from the group of Ti, V, Zr, Nb, Mo, Hf, Ta and W. The diamond polishing method includes pushing the above stated grinder against the diamond, and rotating or moving the grinder relative to the diamond while keeping the portion of the diamond subjected to polishing at room temperature. Alternatively, the portion of the diamond subjected to polishing can be heated to a temperature within the range 100-800° C.
Abstract:
A tool for grinding and polishing diamond and a method for polishing diamond in which a single crystal diamond, a diamond thin film, a sintered diamond compact and the like can be polished at low temperatures without causing cracks, fractures or degradation in quality therein. The tool and method provide a polishing operation which is easy to accomplish, provides stable polishing quality, and provides decreased costs while maintaining stable grinder performance. The grinder is formed of a main component which is an intermetallic compound consisting of one kind or more of elements selected from the group of Al, Cr, Mn, Fe, Co, Ni, Cu, Ru, Rh, Pd, Os, Ir and Pt and one kind or more of elements selected from the group of Ti, V, Zr, Nb, Mo, Hf, Ta and W. The diamond polishing method includes pushing the above stated grinder against the diamond, and rotating or moving the grinder relative to the diamond while keeping the portion of the diamond subjected to polishing at room temperature. Alternatively, the portion of the diamond subjected to polishing can be heated to a temperature within the range 100-800° C.