Abstract:
A semiconductor device has: a buffer layer formed on a conductive substrate and made of AlxGa1-xN with a high resistance; an element-forming layer formed on the buffer layer, having a channel layer, and made of undoped GaN and N-type AlyGa1-yN; and a source electrode, a drain electrode and a gate electrode which are selectively formed on the element-forming layer. The source electrode is filled in a through hole provided in the buffer layer and the element-forming layer, and is thus electrically connected to the conductive substrate.
Abstract translation:半导体器件具有:形成在导电基板上并具有高电阻的Al x Ga 1-x N的缓冲层; 形成在缓冲层上的元件形成层,具有沟道层,由未掺杂的GaN和N型Al y Ga 1-y N制成; 以及选择性地形成在元件形成层上的源电极,漏电极和栅电极。 源电极被填充在设置在缓冲层和元件形成层中的通孔中,因此电连接到导电基板。
Abstract:
In a lithium secondary battery of the present invention, the positive electrode includes a positive electrode current collector and a positive electrode active material layer carried on the positive electrode current collector, the negative electrode includes a negative electrode current collector and a negative electrode active material layer carried on the negative electrode current collector, a heat-resistant layer is formed on the negative electrode, and an insulating tape is attached onto at least a part of the exposed portion of the positive electrode current collector that is opposite to the end of the negative electrode active material layer. Thus, by forming the heat-resistant layer on the negative electrode and attaching the insulating tape onto a part of the exposed portion of the positive electrode current collector, it is possible to efficiently provide a lithium secondary battery exhibiting high safety.
Abstract:
An object of the present invention is to reduce the resistance of an electrode of a Group III nitride semiconductor. A thin Si film and a thin Ti film are formed selectively in a contact formation region on a surface of an AlGaN layer as a Group III nitride semiconductor layer formed on a substrate, and the resulting substrate is heat-treated at a high temperature. By the heat treatment, Si is diffused into the AlGaN layer in the ohmic contact formation region at a concentration of about 1020 cm3. Further, an electron density sufficiently high to provide an ohmic characteristic through a reaction between Si and Ti is provided. Thus, a low resistance TiSi2 portion resulting from the reaction between Si and Ti, a TiN portion resulting from a reaction between Ti and AlGaN and a Group III metal portion of Ga and Al devoid of nitrogen are formed in the contact formation region thereby to provide a low resistance electrode film mainly comprising TiSi2.
Abstract translation:本发明的目的是降低III族氮化物半导体的电极的电阻。 在AlGaN层的表面上的接触形成区域中选择性地形成薄的Si膜和薄的Ti膜,作为形成在衬底上的III族氮化物半导体层,并将所得到的衬底在高温下进行热处理。 通过热处理,Si在欧姆接触形成区域中扩散到约10 20 cm 3的浓度的AlGaN层中。 此外,提供足够高的电子密度以通过Si和Ti之间的反应提供欧姆特性。 因此,形成由Si和Ti之间的反应产生的低电阻TiSi 2 H 2部分,由Ti和AlGaN之间的反应导致的TiN部分和缺少氮的Ga和Al的III族金属部分 在接触形成区域中,由此提供主要包含TiSi 2 N的低电阻电极膜。
Abstract:
Wrapper paper for a smoking article carries 1 g/m2 to 15 g/m2 of a burn adjusting agent and 1 g/m2 to 30 g/m2 of a calcium phosphate-based compound in the wrapper paper.
Abstract translation:用于吸烟制品的包装纸将1g / m 2至15g / m 2的燃烧调节剂和1g / m 2 2 / 至包装纸中的30g / m 2磷酸钙基化合物。
Abstract:
A semiconductor device includes: a substrate; a buffer layer including GaN formed on the substrate, wherein: surfaces of the buffer layer are c facets of Ga atoms; a channel layer including GaN or InGaN formed on the buffer layer, wherein: surfaces of the channel layer are c facets of Ga or In atoms; an electron donor layer including AlGaN formed on the channel layer, wherein: surfaces of the electron donor layer are c facets of Al or Ga atoms; a source electrode and a drain electrode formed on the electron donor layer; a cap layer including GaN or InGaAlN formed between the source electrode and the drain electrode, wherein: surfaces of the cap layer are c facets of Ga or In atoms and at least a portion of the cap layer is in contact with the electron donor layer; and a gate electrode formed at least a portion of which is in contact with the cap layer.
Abstract:
A binder made of a mixture of a first binder component including styrene butadiene copolymer containing styrene at between 20% and 70%, and a second binder component selected from at least one of styrene butadiene copolymer containing styrene at between 80% and 100% and polystyrene is used for the negative electrode of rechargeable batteries comprising a carbon material and the binder. The use of the negative electrode comprising the carbon material and binder results in good resistance to peeling of a coated film, and thus ease of handling of a negative electrode sheet. Consequently, rechargeable batteries with good low-temperature discharge characteristics are supplied at good yield.
Abstract:
An n-type first single crystal silicon layer is provided as collector region over a silicon substrate with a first insulating film interposed therebetween. A p-type first polysilicon layer is provided as an extension of a base region over the first single crystal silicon layer with a second insulating film interposed therebetween. A p-type second single crystal silicon layer is provided as intrinsic base region on a side of the first single crystal silicon layer, second insulating film and first polysilicon layer. An n-type third single crystal silicon layer is provided as emitter region on a side of the second single crystal silicon layer. And an n-type third polysilicon layer is provided on the first insulating film as extension of an emitter region and is connected to a side of the third single crystal silicon layer.
Abstract:
A resin-molded product includes a phenol-based oxidation inhibitor, and a thiol-based compound. The thiol-based compound reacts chemically with a coloring substance (or a compound having a quinone-type structure) resulting from the phenol-based oxidation inhibitor to interrupt a long conjugated system arising in the coloring substance. As a result, the absorption due to the coloring substance is canceled in the visible light region. Thus, the resin-molded product is inhibited from yellowing.
Abstract:
On a GaAs substrate are provided a buffer layer comprising an Undope-GaAs layer, a first n-InGaAs layer having an In composition ratio of 0.2, a second n-InGaAs layer having an In composition ratio of 0.02, a contact layer comprising an N.sup.+ type GaAs layer, a gate electrode, a source electrode, and a drain electrode. The first n-InGaAs layer and the second n-InGaAs layer form active layers in which an operating current flows. The second n-InGaAs layer having excellent crystallinity is formed on the first n-InGaAs layer. Consequently, a field effect transistor which displays a super low distortion characteristic having IP2 of 67.2 dBm and IP3 of 35 dBm can be manufactured with good reproducibility.
Abstract:
A method of applying to surfaces of component parts of an evaporator hydrophilic coatings which do not emit offensive odors under operating conditions, or at other times. The method provides coatings in which water glass and colloidal silica are attached to the surfaces in the form of solids in an amount of 0.010 to 0.066 g/m.sup.2.
Abstract translation:适用于蒸发器的组成部分的表面的方法,亲水涂层在操作条件下或其它时间不会发出令人不愉快的气味。 该方法提供涂层,其中水玻璃和胶体二氧化硅以0.010至0.066g / m 2的量以固体形式附着在表面上。