Abstract:
A connector device for interconnecting a plurality of light waveguides comprises two carrier members which have aligning centering grooves for receiving waveguides which are stripped of the cladding. Each of the carrier members has a recess adjacent a rear end in which the unstripped portions of the waveguides are accepted. A first adhesive, which hardens as a very hard adhesive, is utilized for securing the waveguides in the centering grooves adjacent the first surface which will be ground to form the abutting surface and a second adhesive which is substantially softer and more elastic in the hardened condition is utilized for securing the cladded portions of the waveguide in the recess so that less stress is applied to the waveguides. The method of forming the carrier member with the waveguide includes introducing the first adhesive, preferably by capillary action, through the first surface of the carrier that will subsequently be the abutting surface and after hardening the first adhesive applying the second adhesive through the rear end.
Abstract:
A connector element for light waveguides has two carrier members which have guide grooves for the optical fibers and guide channels receiving guide ribs of guide rails for holding the two carrier members in alignment. To prevent possible misalignment due to micro-offsets in the surfaces of the guide channels and ribs of the guide rails or dust particles or the penetration of an immersion material into the guide channel, a portion of the contacting surfaces, either the contacting surface of the guide channel or of the guide rib is removed so that engagement between the rib and channel occurs only at spaced locations.
Abstract:
A connector device for a plurality of light waveguides comprises two carrier members having centering grooves which are aligned together by means of a guide elements received in guide grooves and bridging the two carrier members. In order to maintain pressure between the guide elements and guide grooves, a spring clip is provided for applying a holding force in this location without applying a force on the carrier member adjacent the centering grooves.
Abstract:
A fiber optic installation structure and method therefor includes a duct having an inner tube, at least one optical waveguide, and a jacket and is disposed within a channel of a paved surface. The jacket generally surrounds the inner tube. When the duct is disposed within a channel defined by a paved surface, a friction fit is created between the duct and the channel for holding the duct in place. Thereafter, a filling material is used for overlying the duct and at least partially filling the channel. In other embodiments, the jacket is capable of being compressed when installed into the channel. The duct may include an armor layer disposed between the inner tube and the jacket for protecting the inner tube. Moreover, at least one optical waveguide may be disposed within at least a portion of the inner tube of the duct and may be introduced after the duct is installed in the paved surface.
Abstract:
A configuration containing at least one optical core is placed into a street formed by a top layer and a flat sub-layer located underneath. The configuration is applied positioned on a surface of the sub-layer and the top layer is subsequently applied in a flat manner, so that the configuration is embedded in the top layer. The installation of the configuration takes place with comparatively low cost, since no earth removal work or underground work is necessary. The invention is especially advantageous when the street surface has to be renovated anyway.
Abstract:
A splice protection device is constructed for acceptance of a pair of light waveguides, with the splice location being optimally sealed by elastic holders having an adhesive film. The elastic splice protection device can be utilized in a bent shape, so that the dimensions of a cassette and other receptacle devices can be designed to be smaller.
Abstract:
A method and device for on-site producing a cable at the location for placing the cable includes a mobile device supporting an arrangement for forming a protective sheath of the cable and an arrangement for inserting the optical fibers or electrical leads into the sheath and then discharging the sheath into a cable laying position. The device may include an arrangement for forming a trench for receiving the cable, an arrangement for inserting a filling compound into the interior of the sheath as the leads or fibers are introduced therein and means for supplying a filling material for filling the trench subsequent to insertion of the cable therein.
Abstract:
An underground container has, in the upper region, a plinth-like open frame which encloses a box-like container to accommodate electronic subassemblies. The open frame prevents the penetration of water and dirt during mounting and repair work. The plinth-like open frame accommodates a sealing cover and a load bearing cover, both of which help prevent the penetration of water and dirt after installation of the container.
Abstract:
A light waveguide signal detector enables testing for the transmission of a signal in a light waveguide without disturbing the transmission of the signal. The light waveguide signal detector comprises a base part having a pressure trough lined with an optically transparent material, at least one light receiver being arranged under the elastic material, a pressure part for deflecting the light waveguide to obtain an emergence of a light signal therefrom and a light covering for protecting against stray light surrounding a portion of the pressure part which engages the optical fiber.
Abstract:
A splicing device comprises a bottom part with a V-notch and a cover part to be fixed thereon, the two parts being held together by a metal sleeve. The necessary pressing force for satisfactory fixing of the light waveguides to be joined in the V-notch is brought about by a permanent plastic deformation of the metal sleeve in the region of cutouts in the bottom and cover parts.