Abstract:
A method and apparatus for treatment of heart failure, hypertension and renal failure by stimulating the renal nerve. The goal of therapy is to reduce sympathetic activity of the renal nerve. Therapy is accomplished by at least partially blocking the nerve with drug infusion or electrostimulation. Apparatus can be permanently implanted or catheter based.
Abstract:
Methods and apparatus are provided for thermally-induced renal neuromodulation. Thermally-induced renal neuromodulation may be achieved via direct and/or via indirect application of thermal energy to heat or cool neural fibers that contribute to renal function, or of vascular structures that feed or perfuse the neural fibers. In some embodiments, parameters of the neural fibers, of non-target tissue, or of the thermal energy delivery element, may be monitored via one or more sensors for controlling the thermally-induced neuromodulation. In some embodiments, protective elements may be provided to reduce a degree of thermal damage induced in the non-target tissues. In some embodiments, thermally-induced renal neuromodulation is achieved via delivery of a pulsed thermal therapy.
Abstract:
A fluid removal apparatus comprising a blood removal catheter for insertion into a peripheral vein or artery and having a size 16 standard gage needle or less; a filter having a blood inlet port coupled to the blood removal catheter, a blood outlet port, an excess fluid removal port, and a blood flow passage with porous membrane which passes fluids to the fluid removal port and retains solutes of 60,000 Daltons or greater, and a blood return catheter for inserting into a peripheral vein or artery and having a size of 16 standard gage needle or less.
Abstract:
A method and apparatus for prevention and reduction of myocardial infarct expansion and heart remodeling by infusion of fluid into the pericardial space of the heart to created a hydraulic heart constraint. As a result of the constraint ventricular stress and dilation is reduced. Pressure in the pericardial sac is maintained at a safe level for the duration of treatment. Apparatus consists of a catheter and a fluid infusion system.
Abstract:
A method and apparatus for treatment of hypertension and heart failure by increasing vagal tone and secretion of endogenous atrial hormones by excitory pacing of the heart atria. Atrial pacing is done during the ventricular refractory period resulting in atrial contraction against closed AV valves, and atrial contraction rate that is higher than the ventricular contraction rate. Pacing results in the increased atrial wall stress. An implantable device is used to monitor ECG and pace the atria in a nonphysiologic manner.
Abstract:
A patient hydration system including an infusion device for administering hydration fluid to a patient, and a hydration fluid measurement device responsive to a source of hydration fluid, a patient urine output measurement device. A controller is responsive to the hydration fluid measurement device and the patient urine output measurement device. The controller operates the infusion device, in response to the patient urine output measurement device and the hydration fluid measurement device, to hydrate the patient based on the patient's urine output. The controller also monitors the operation history of the infusion device thereby providing redundancy in the measurement of the amount of hydration fluid administered to the patient.
Abstract:
Methods and apparatus are provided for renal neuromodulation using a pulsed electric field to effectuate electroporation or electrofusion. It is expected that renal neuromodulation (e.g., denervation) may, among other things, reduce expansion of an acute myocardial infarction, reduce or prevent the onset of morphological changes that are affiliated with congestive heart failure, and/or be efficacious in the treatment of end stage renal disease. Embodiments of the present invention are configured for percutaneous intravascular delivery of pulsed electric fields to achieve such neuromodulation.
Abstract:
Methods and apparatus are provided for thermally-induced renal neuromodulation. Thermally-induced renal neuromodulation may be achieved via direct and/or via indirect application of thermal energy to heat or cool neural fibers that contribute to renal function, or of vascular structures that feed or perfuse the neural fibers. In some embodiments, parameters of the neural fibers, of non-target tissue, or of the thermal energy delivery element, may be monitored via one or more sensors for controlling the thermally-induced neuromodulation. In some embodiments, protective elements may be provided to reduce a degree of thermal damage induced in the non-target tissues.
Abstract:
A method and apparatus for treatment of chronic renal failure by reducing renal perfusion pressure. Treatment is performed by partial occlusion of renal artery. A device to constrict the renal artery may be implanted in the body of a patient and include a renal pressure sensor and a mechanical control applied the renal artery to adjustably constrict a cross sectional area of the artery.
Abstract:
A method and apparatus for treatment of hypertension and heart failure by increasing secretion of endogenous atrial hormones by pacing of the heart atria. Atrial pacing is done during the ventricular refractory period resulting in premature atrial contraction that does not result in ventricular contraction. Pacing results in the atrial wall stress, peripheral vasodilation, ANP secretion. Concomitant reduction of the heart rate is monitored and controlled as needed with backup pacing.