Abstract:
A medical device comprising a corewire, sensor core, and coupler is presented. A portion of the corewire is disposed within a first end of the coupler, and a portion of the sensor core is disposed within a second end. Alternatively, the device comprises a corewire and a sensor assembly comprising a sensor core having first and second ends and a bore in the first end. A portion of the corewire is disposed within the bore. A method of manufacture comprises providing a corewire, sensor core, and coupler. The method further comprises inserting a portion of the corewire into a first end of the coupler, and a portion of the sensor core into a second end. Alternatively, the method comprises providing a sensor core having first and second ends, and a corewire. The method further comprises forming a bore in the first end, and inserting the corewire into the bore.
Abstract:
A medical device configured for diagnosis or treatment of tissues within a body is provided. The device includes an elongate, deformable member configured to be received within a lumen in the body and having proximal and distal ends. A position sensor is disposed at the distal end. In one embodiment, a conductor is wound about the member. The conductor is connected to the position sensor and has a first winding pitch over a first portion of the deformable member and a second winding pitch, different from the first winding pitch, over a second portion of the deformable member. In another embodiment, the member defines a neutral longitudinal axis extending between the proximal and distal ends. A conductor extending between the proximal and distal ends is connected to the position sensor at a connection node on the neutral axis.
Abstract:
Method for registering a three dimensional (3D) pre acquired image coordinates system with a Medical Positioning System (MPS) coordinate system and a two dimensional (2D) image coordinate system, the method comprising acquiring a 2D image of a volume of interest, the volume including an organ, the 2D image being associated with the 2D coordinate system, acquiring MPS points within the organ, the MPS points being associated with the MPS coordinate system, the MPS coordinate system being registered with the 2D coordinate system, extracting a 3D image model of the organ from a pre acquired 3D image of the volume of interest, estimating a volumetric model of the organ from the acquired MPS points, and registering the 3D coordinate system with the MPS coordinate system by matching the extracted 3D image model and the estimated volumetric model of the organ.
Abstract:
Systems and methods are disclosed for navigating a surgical device toward a target organ in the body of a patient. An example method includes providing a surgical needle and a guide wire, the surgical needle configured for insertion into a vein or a beating heart. The method also includes holding the guide wire within the surgical needle while the surgical needle is inserted into the vein or the beating heart. The method also includes generating output in two modes, the output based on at least one medical positioning system (MPS) sensor on the guide wire, the output corresponding to a position of the surgical needle and the guide wire for navigating the surgical needle and the guide wire toward a target in the vein or the heart. The methods can be carried out directly by a physician or via a computer processor-based surgical system.
Abstract:
A flexible guidewire comprising a hollow tube, having a proximal section and a distal section, the distal section having a distal tip, the outer diameter of the distal section gradually decreasing toward the distal tip, the outer diameter of the distal tip being larger than the smallest outer diameter of the distal section, the flexible guidewire further comprising a plug coupled with the distal tip of the hollow tube for creating a non-traumatic tip, and the flexible guidewire further comprising a tubular spring, being place around the distal section of the hollow tube for maintaining the outer diameter of the hollow tube over the length thereof and for supporting compressive loads.
Abstract:
A system for navigating a medical device is provided. In one embodiment, a magnetic field generator assembly generates a magnetic field. Position sensors on the medical device, on an imaging system and on the body generate signals indicative of the positions within the magnetic field. The generator assembly and reference sensors are arranged such that a correlation exists between them and the positions of the body and of a radiation emitter and a radiation detector of the imaging system. An electronic control unit (ECU) determines, responsive to signals generated by the sensors, a position of the medical device, a position of one of the radiation emitter and detector and a distance between the emitter and detector. Using this information, the ECU can, for example, register images from the imaging system in a coordinate system and superimpose an image of the device on the image from the imaging system.
Abstract:
An elongate medical device having an axis comprises an inner liner, a jacket radially outward of the liner, a braid comprising metal embedded in the jacket, a sensor, and at least one wire electrically connected to said sensor. The at least one wire is one of: embedded in the jacket and optionally disposed helically around the braid; extending longitudinally within a tube which extends generally parallel to the device axis and wherein the tube is embedded in the jacket; and disposed within a lumen, wherein the lumen extends longitudinally within the jacket.
Abstract:
A method for registering a three dimensional (3D) coordinates system with a Medical Positioning System (MPS) coordinate system and with a two dimensional (2D) coordinate system, includes acquiring at least one 2D image of a volume of interest, the volume of interest including at least one tubular organ within the body of a patient. The 2D image is associated with the 2D coordinate system, and a plurality of MPS points is acquired, within the at least one tubular organ. The MPS points are associated with the MPS coordinate system, the MPS coordinate system being registered with the 2D coordinate system. A 3D image model is extracted of the at least one tubular organ form a pre-acquired 3D image of the volume of interest. A volumetric model of the at least one tubular organ from the 2D image is estimated and from the acquired MPS points, the 3D coordinate system is registered with the MPS coordinate system and with the 2D coordinate system by matching the extracted 3D image model and the estimated volumetric model of the at least one tubular organ.
Abstract:
A medical device comprising a corewire, sensor core, and coupler is presented. A portion of the corewire is disposed within a first end of the coupler, and a portion of the sensor core is disposed within a second end. Alternatively, the device comprises a corewire and a sensor assembly comprising a sensor core having first and second ends and a bore in the first end. A portion of the corewire is disposed within the bore. A method of manufacture comprises providing a corewire, sensor core, and coupler. The method further comprises inserting a portion of the corewire into a first end of the coupler, and a portion of the sensor core into a second end. Alternatively, the method comprises providing a sensor core having first and second ends, and a corewire. The method further comprises forming a bore in the first end, and inserting the corewire into the bore.
Abstract:
A medical device comprising a corewire, sensor core, and coupler is presented. A portion of the corewire is disposed within a first end of the coupler, and a portion of the sensor core is disposed within a second end. Alternatively, the device comprises a corewire and a sensor assembly comprising a sensor core having first and second ends and a bore in the first end. A portion of the corewire is disposed within the bore. A method of manufacture comprises providing a corewire, sensor core, and coupler. The method further comprises inserting a portion of the corewire into a first end of the coupler, and a portion of the sensor core into a second end. Alternatively, the method comprises providing a sensor core having first and second ends, and a corewire. The method further comprises forming a bore in the first end, and inserting the corewire into the bore.