Abstract:
Exemplary embodiments of methods and apparatuses to manage a power of a data processing system are described. A constraint parameter of a system operating at a first frequency and a first voltage is monitored. The system is, based on the monitoring of the constraint parameter, forced into an idle state while operating at a second frequency and a second voltage. The idle state prevents instructions from being executed.
Abstract:
A control indication assembly. A first control mounted on a surface of a computer is coupled to a first sensor, to a first sensing circuit to send an electrical signal to the first control when a user-touch occurs to the first sensor, and to a first indicator to indicate an occurrence of said user-touch. A second control mounted on a surface of a display which is coupled to the computer is coupled to a second sensor, to a second sensing circuit to send an electrical signal to said second control when said user-touch occurs to the display, and to a second indicator to indicate an occurrence of the user-touch. The first and second control are configured such that the first and second indicator are synchronized to exhibit identical behaviors when the user-touch occurs to either the first control or the second control.
Abstract:
Exemplary embodiments of methods and apparatuses to manage a power of a system that leverage intermediate power margins are described. One or more subsystems of the system are operated at one or more performance points. A power consumed by the one or more subsystems at each of the one or more performance points is measured. An operational power of the one or more subsystems at the one or more performance points is determined. The one or more subsystems are operated at well-known conditions at the one or more performance points. The operational power may be adjusted based on data associated with the one or more subsystems. The operational power is provided to a power lookup table. The power is distributed among the one or more subsystems based on the operational power.
Abstract:
A communications system by which a user may provide inputs using an accessory device is provided. The accessory device may provide instructions to the communications device over any suitable wired or wireless communications path. The accessory device may include any suitable input mechanism for providing an input, including for example one or more switches, sliders, knobs, keys, motion sensing components, environmental sensing components, or any other input mechanism that the user may actuate. A communications system by which a communications device may transmit urgent communications requests is provided. The user may select an urgent option when transmitting a communications request to cause the recipient communications device to enable an urgent mode in which the recipient communications device may change the notification scheme to ensure that the recipient receives the urgent communications request.
Abstract:
Physical media containing digital content can be exchanged for a license to download an electronic copy of the digital content. In an implementation, the physical media is received at a kiosk and secured such that it is not accessible to the user after the license is granted. The license provides the user with rights to download the digital content to a personal computer, set-top box, gaming device, portable video player or portable image viewer having digital rights enforcement.
Abstract:
Circuitry and techniques for managing a power supply are disclosed. A processor-controlled switch is employed to control the delivery of power to conductors that provide power to an external electronic device wherein the processor controls the switch opening and the switch opening based not only on contemporaneous parameter measurements but also on state information known to the processor. The management circuit can control the power supply without requiring the use of an additional sense wire between the management circuit and the external electronic device.
Abstract:
Exemplary embodiments of methods and apparatuses to manage a power of a system that leverage intermediate power margins are described. One or more subsystems of the system are operated at one or more performance points. A power consumed by the one or more subsystems at each of the one or more performance points is measured. An operational power of the one or more subsystems at the one or more performance points is determined. The one or more subsystems are operated at well-known conditions at the one or more performance points. The operational power may be adjusted based on data associated with the one or more subsystems. The operational power is provided to a power lookup table. The power is distributed among the one or more subsystems based on the operational power.
Abstract:
Methods and apparatuses for dynamically budgeting power usage in a data processing system. In one aspect, a data processing system, includes: one or more first components capable of being dynamically throttled to a plurality of different performance level settings; one or more second components; and one or more power usage sensors. The one or more power usage sensors are to determine information on power usage during a first time period of operation of the data processing system. The one or more first components and the one or more second components may include a computing element to determine one of the performance level settings of the one or more first components of the data processing system for a second time period subsequent to the first time period using the information on the power usage during the first time period.
Abstract:
A control indication assembly. A first control mounted on a surface of a computer is coupled to a first sensor, to a first sensing circuit to send an electrical signal to the first control when a user-touch occurs to the first sensor, and to a first indicator to indicate an occurrence of said user-touch. A second control mounted on a surface of a display which is coupled to the computer is coupled to a second sensor, to a second sensing circuit to send an electrical signal to said second control when said user-touch occurs to the display, and to a second indicator to indicate an occurrence of the user-touch. The first and second control are configured such that the first and second indicator are synchronized to exhibit identical behaviors when the user-touch occurs to either the first control or the second control.
Abstract:
A method of operating a media player is provided. In one embodiment the method includes receiving a plurality of initially configured video settings for viewing a video segment on the media player for a desired playback duration. The method further includes determining power required to play the video segment based on the initial video settings and playing the video segment if the required power matches or is less than total power available to the media player. In another embodiment, the method may further include, if the required power exceeds the total power available to the media player, adjusting one or more of the initial video settings, either automatically or by user inputs, to reduce the power required to play the requested video segment for the desired playback duration.