Abstract:
Disclosed are nanoparticles formed from a plurality of two or more different components. The two or more components are dispersed using a dispersing agent such that the nanoparticles have a substantially uniform distribution of the two or more components. The dispersing agents can be poly functional small organic molecules, polymers, or oligomers, or salts of these. The molecules of the dispersing agent bind to the particle atoms to overcome like-component attractions, thereby allowing different and/or dissimilar components to form heterogeneous nanoparticles. In one embodiment, dissimilar components such as iron and platinum are complexed using the dispersing agent to form substantially uniform heterogeneous nanoparticles. Methods are also disclosed for making the multicomponent nanoparticles. The methods include forming suspensions of two or more components complexed with the dispersing agent molecules. The suspensions can also be deposited on a support material and/or anchored to the support.
Abstract:
Methods for manufacturing supported catalysts and the use of these catalysts in, e.g., the direct synthesis of hydrogen peroxide. The nanocatalyst particles are manufactured from catalyst atoms complexed with organic agent molecules (e.g., polyacrylic acid). The complexed catalyst atoms are heated to cause formation of the nanocatalyst particles. The temperature used to cause formation of the particles is typically greater than 30° C., preferably greater than 50° C, and more preferably greater than 70° C.
Abstract:
Metal-containing colloids are manufactured by reacting a plurality of metal ions and a plurality of organic agent molecules to form metal complexes in a mixture having a pH greater than about 4.25. The metal complexes are reduced for at least 0.5 hour to form stable colloidal nanoparticles. The extended reduction time improves the stability of the colloidal particles as compared to shorter reduction times. The stability of the colloidal particles allows for colloids with higher concentrations of metal to be formed. The concentration of metal in the colloid is preferably at least about 150 ppm by weight.
Abstract:
A process is disclosed for the direct catalytic production of aqueous solutions of hydrogen peroxide from hydrogen and oxygen in the presence of a small amount of one or more water soluble organic additives (about 0.1–10% by weight). Suitable catalysts include nanometer-sized noble metal catalytic crystal particles. The catalyst particles preferably have a controlled surface coordination number of 2 to increase the selectivity of hydrogen peroxide production. The water soluble additive(s) increases catalytic activity causing significant increases in the apparent first order reaction rate constant for the direct production of aqueous hydrogen peroxide.
Abstract:
An improved catalytic process for producing hydrogen peroxide directly by reaction of hydrogen and oxygen is disclosed. The process employs staged or sequential feeding of portions of the hydrogen feedstream into zones in the catalytic reactor in amounts sufficient to maintain an essentially constant and preferred ratio of oxygen to hydrogen at the inlet to each of the vessel's zones whereby high selectivity for hydrogen peroxide production is achieved and excess oxygen recycle requirements are minimized.
Abstract:
An improved catalytic process for producing hydrogen peroxide directly by reaction of hydrogen and oxygen is disclosed. The process employs staged or sequential feeding of portions of the hydrogen feedstream into zones in the catalytic reactor in amounts sufficient to maintain an essentially constant and preferred ratio of oxygen to hydrogen at the inlet to each of the vessel's zones whereby high selectivity for hydrogen peroxide production is achieved and excess oxygen recycle requirements are minimized.
Abstract:
Supported reactive catalysts having a controlled coordination structure and methods for their production are disclosed. The supported catalysts of the present invention are useful for the preparation of hydrogen peroxide with high selectivity in addition to other chemical conversion reactions. The supported catalyst comprises catalyst particles having top or outer layer of atoms in which at least a portion of the atoms exhibit a controlled coordination number of 2. The catalyst and methods may be used for the concurrent in situ and ex situ conversion of organic compounds. In addition, a process is provided for catalytically producing hydrogen peroxide from hydrogen and oxygen feeds by contacting them with the catalysts of the invention and a suitable organic liquid solvent having a Solvent Selection Parameter (SSP) between 0.14×10−4 and 5.0×10−4.
Abstract:
A method for regenerating spent supported metal catalysts comprising treating the spent catalyst with an organo-metallic complex forming agent having an ionization constant pK1 of at least 2.5. The catalyst activity is restored to an activity level near to or greater than the fresh catalyst. The regeneration method is particularly useful for regenerating spent palladium catalysts on an alumina support as utilized for the hydrogenation of ethyl anthraquinone (EAQ) in the production of hydrogen peroxide.
Abstract:
Supported reactive catalysts having a controlled coordination structure and methods for their production are disclosed. The supported catalysts of the present invention are useful for the preparation of hydrogen peroxide with high selectivity in addition to other chemical conversion reactions. The supported catalyst comprises catalyst particles having top or outer layer of atoms in which at least a portion of the atoms exhibit a controlled coordination number of 2. The catalyst and methods may be used for the concurrent in situ and ex situ conversion of organic compounds. In addition, a process is provided for catalytically producing hydrogen peroxide from hydrogen and oxygen feeds by contacting them with the catalysts of the invention and a suitable organic liquid solvent having a Solvent Selection Parameter (SSP) between 0.14×10−4 and 5.0×10−4.
Abstract:
A process for producing oxidized organic chemical products from various organic chemical feedstocks utilizing as oxidant hydrogen peroxide (H2O2) produced by noble metal nanocatalysis with high selectivity at low hydrogen concentration. The organic chemical oxidation process step can optionally be carried out in situ concurrent with the production of hydrogen peroxide or in a two stage process. In the two stage process, the hydrogen peroxide intermediate is directly produced by noble metal nanocatalysis from hydrogen and oxygen feeds plus a suitable solvent in a first catalytic reaction step. An organic chemical feedstock and the hydrogen peroxide intermediate and solvent solution are fed into a second catalytic reactor to produce an oxidized organic chemical product.
Abstract translation:一种利用贵金属纳米催化作用的氧化剂过氧化氢(H 2 O 2)在低氢浓度下以高选择性生产的各种有机化学原料生产氧化有机化学产品的方法。 有机化学氧化工艺步骤可以任选地与过氧化氢的生产同时进行或在两阶段工艺中进行。 在二阶段过程中,过氧化氢中间体在第一催化反应步骤中通过贵金属纳米催化从氢气和氧气加上合适的溶剂直接生产。 将有机化学原料和过氧化氢中间体和溶剂溶液进料到第二催化反应器中以产生氧化的有机化学产物。