Abstract:
One or more techniques and/or systems are provided for non-disruptively addressing misalignment between a virtual data format and an underlying data format. Virtual data, such as a guest operating system of a virtual machine, may be stored within a virtual structure, such as a virtual machine disk, according to a virtual data format. The virtual structure may be stored within a storage device according to a storage data format. If misalignment is detected, then a new data container may be created within the storage device. A shim, sized according to a misalignment offset, may be inserted into the new data container in order to align the new data container with the storage device. Virtual data may be migrated from the virtual structure to the new data container to achieve alignment. During the migration, the virtual data may remain available from the virtual structure (e.g., a virtual machine may still execute).
Abstract:
This document relates to the re-inclusion of items in a data feed. For example, a feed of items is sent to a referral network site. The feed includes some of the items sold through an electronic commerce network site. The referral network site refers a plurality of customers to the electronic commerce network site. One of the items excluded from the feed is identified and a forecast of sales through the electronic commerce network site is generated therefor. The forecast of sales specifies a number of the one of the items projected to be sold that are subject to a referral from the referral network site. A determination is made as to whether to include the one of the items in the feed based at least in part upon the forecast of sales.
Abstract:
A barrier structure includes a composite film. The composite film includes a polymer matrix and a plurality of dispersed high aspect ratio glass particles within the polymer matrix.
Abstract:
Gap values for a collection of images are obtained; each gap value is a temporal difference between temporally adjacent images. A first grouping of the collection of images into one or more groups is determined based at least in part on the gap values. The first grouping is performed such that each group is temporally contiguous. The first grouping is presented and input from a user is received in response to the presented first grouping. A second grouping of the collection of images into two or more groups is determined based at least in part on the user input. The second grouping is presented.
Abstract:
A system for capturing and delivering location-based information and services captures wireless landmark information sent by mobile devices to build a map of locations based on the relationship between wireless landmarks that are visible to the mobile device at the same time. A wireless landmark may be a cellular telephone base site or local network (WiFi/Bluetooth) access point. The mobile device may capture a location signature using identifiers for all wireless local area networks in range as well as one or more cellular telephone transmitters. A location service resolves the location signature into a relative location that an application service may use to record incoming information or to send location-specific information such as traveler comments, reviews, or advertisements. The distance between two mobile devices may be calculated using weighted edge values, representing a number of ‘hops’ between location signatures.
Abstract:
Online backup of image files includes providing a user interface for making a backup selection based on an image catalog that includes a plurality of image files, the user interface including a resolution option; receiving a backup selection based on the image catalog, the backup selection indicating a selection of an image file in the image catalog and a resolution choice associated with the image file; and sending a copy of the image file to a remote storage, the copy having a resolution that corresponds to the resolution choice.
Abstract:
In various embodiments, network-traffic records overlapping multiple binning windows are prorated such that partial records are stored in each binning window of overlap. In addition, the full, non-prorated record is stored in at least one of the binning windows.
Abstract:
In certificate chain validation, a parent certificate is used to validate a child certificate. The child certificate can indicate which parent certificate can be used to validate it. In some situations, a child certificate may not contain a certificate authority identifier that can be used to identify the parent certificate. Instead, the child certificate can contain a hash value of a modulus of the parent public key that can be used to identify the parent certificate. The hash value of the modulus of the parent public key can be associated with the parent public key. As such, the parent public key used in certificate chain validation of the child certificate can be identified using the hash value of the modulus of the parent public key.
Abstract:
Systems and methods which implement synchronization across hierarchical targets by ordering elements in a hierarchical target in order of hierarchical depth and propagating a first set of element changes based upon the hierarchical order of elements and a second set of element changes based upon a non-hierarchical order of elements priority are shown. A child attribute data model is utilized with respect to hierarchical data structures for which synchronization is provided in which hierarchy relationships are represented as an attribute of the child according to embodiments.
Abstract:
A catheter for use in continuous flow peritoneal dialysis comprising an inflow tube and an outflow tube, wherein both are connected on one end to a dialysis machine. The inflow tube is divided into a plurality of smaller inflow auxiliary tubes, and the outflow tube is divided into a plurality of smaller outflow auxiliary tubes. The auxiliary tubes each contain a plurality of apertures for the rapid and efficient movement of dialysis solution in and out of the peritoneal cavity. The auxiliary tubes are covered by a sheath prior to implantation, which is then removed, thereby deploying, preferably into an open-basket shape, the auxiliary tubes within the peritoneal cavity which separate to allow for the continuous flow of dialysis solution. This reduces the time required to complete the procedure and increases its efficiency by reaching a larger surface area of the peritoneal cavity, all without kinking or blocking.