Abstract:
A method of manufacturing a heat sink includes, firstly, providing a plurality of fins each having a head and a body extending from the head, providing a base having a plurality of studs protruding from a top surface thereof, and providing a cover defining a plurality of recesses in a bottom thereof for receiving the heads of the fins and a plurality of orfices for receiving the studs. Next, the cover and the base are pressed to sandwich the heads of the fins therebetween. Then the studs of the base are punched to expand the studs and cause the studs to intimately engage with the cover.
Abstract:
A method for making phase change memory is provided. The method includes following steps. A substrate is provided. A plurality of first row electrode leads and the second row electrode leads is located on the substrate. A carbon nanotube layer is applied on the substrate to cover the first row electrode lead and the second row electrode lead. The carbon nanotube layer is patterned to form a plurality of carbon nanotube units located on the second row electrode lead. A phase change layer is applied on the surface of each carbon nanotube unit. A plurality of first electrodes, a plurality of second electrodes, a plurality of first row electrode leads and a plurality of second row electrode leads is located on the substrate.
Abstract:
A thermoacoustic device includes a substrate, at least one first electrode, at least one second electrode and a sound wave generator. The at least one first electrode and the at least one second electrode are disposed on the substrate. The sound wave generator is contacting with the at least one first electrode and the at least one second electrode. The sound wave generator is suspended on the substrate via the first electrode and the second electrode. The sound wave generator includes a carbon nanotube structure.
Abstract:
A clamp mechanism for clamping a heat sink is disclosed in the present invention. The clamp mechanism includes a base. An accommodating space is formed on a side of the base, and the accommodating space is for accommodating the heat sink. The clamp mechanism further includes at least one constraining component pivoted to the base for engaging with an engaging portion of the heat sink, so as to fix the heat sink inside the accommodating space. The clamp mechanism further includes at least one contacting component pivoted to the base for buckling a hook of the heat sink when pivoting relative to the base, so as to rotate the hook relative to a shaft of the heat sink.
Abstract:
Provided are a plant stress tolerance related protein GmSIK1 and encoding gene and use thereof. The GmSIK1 protein has the amino acid sequence as shown in SEQ ID NO: 2. The transgenic plant with enhanced stress tolerance such as drought tolerance and/or salt tolerance can be obtained from introducing the encoding gene of GmSIK1 protein into plant cell.
Abstract translation:提供植物胁迫耐受相关蛋白GmSIK1和编码基因及其用途。 GmSIK1蛋白具有如SEQ ID NO:2所示的氨基酸序列。通过将GmSIK1蛋白的编码基因导入植物细胞,可以获得具有增强的胁迫耐受性如耐旱性和/或耐盐性的转基因植物。
Abstract:
A thermal-chromatic element includes a sealed enclosure, an isolation layer, a first heating element, a thermal-chromatic material layer, a second heating element and an absorption material layer. The isolation layer is disposed in the sealed enclosure and separates the sealed enclosure into a first chamber and a second chamber. The first heating element is configured to heat thermal-chromatic material layer in the first chamber. The thermal-chromatic material layer is disposed in the first chamber. The thermal-chromatic material layer is able to change color by releasing and absorbing water. The second heating element is configured to heat absorption material layer in the second chamber. The absorption material layer is disposed in the second chamber.
Abstract:
A card connector comprises an insulative housing, two side arms fitting into the two sides of the insulative housing and a positioning set buckled to the side arms. The insulative housing has a slot for adopting the electronic card, and the slot comprises a plurality of conducting terminals. The side arms respectively have a movable arm and a fixed arm. The movable arm and the fixed arm are formed in a single-piece structure. The movable arm is for buckling the electronic card. The positioning set comprises a welding portion, a first plane, a bent portion extending upwardly from the first plane and a second plane extending downwardly from the bent portion. Thus to enable the card connector to automatically adjust the angle between the conducting terminals and the circuit board, thus to maintain the welding end of the conducting terminals and the welding portion of the positioning set on the same plane, in order to steadily weld the conducting terminals to the circuit board and accordingly upgrade the quality of the electrical connection of the card connector.
Abstract:
A field emission device includes an insulating substrate, a number of first electrode down-leads, a number of second electrode down-leads, and a number of electron emission units. The first electrode down-leads are set an angle relative to the second electrode down-leads to define a number of cells. Each electron emission unit is located in each cell and includes a first electrode, a second electrode, and a plurality of electron emitters. The second electrode extends surrounding the first electrode. The plurality of electron emitters located on and electrically connected to at least one of the first electrode and the second electrode. A field emission display is also provided.
Abstract:
Modern coding and modulation techniques have greatly improved the transmission of signals. A method is described including receiving a stream of data bits, demultiplexing the stream into a first and second substream, encoding the first and second substream using a low density parity check coding process, and mapping the first substream to a first region of a symbol constellation map and the second substream to a second region. Also, an apparatus is described including a demultiplexer that produces a first and second bitstream, a first encoder that encodes the first substream using a low density parity check coding process at a first encoding rate, a second encoder that encodes the second substream at a second rate, and a symbol mapper that maps bits from the first substream to a first region of a symbol constellation map and maps bits from the second substream to a second region.
Abstract:
A dual frequency antenna is provided, which includes a helical radiator electrically connected to a main body via a feed point of the main body, a first radiator for generating resonance is formed on the lower portion of said radiator, a second radiator for generating resonance is formed on the upper portion of said radiator, wherein the resonance frequency of the second radiator is higher than that of the first radiator, and the helical pitch of the second radiator is larger than that of the first radiator. The dual frequency antenna easily enables tuning in a whole UHF frequency band, and work performance of an upper semi-sphere of the dual frequency antenna is improved in a GPS frequency band.