Abstract:
A method of welding includes: providing a first workpiece that is made of a material that conducts electricity; providing a second workpiece that is made of a material that conducts electricity and has a plurality of projections formed therein; applying a material between each projection of the plurality of projections, the material having an electrical conductivity that is lower than the conductivity of the second workpiece; disposing an area of the first workpiece at the plurality of projections of the second workpiece; and conducting electricity through the first workpiece and through at least one of the plurality of projections of the second workpiece. A projection weld bond system includes: a first workpiece that is made of a material that conducts electricity; a second workpiece that is made of a material that conducts electricity and has a plurality of projections formed therein; an area of the first workpiece is disposed at the plurality of projections; a material that has an electrical conductivity lower than the conductivity of the second workpiece and is disposed between each of the plurality of projections; and means for conducting electricity through the first workpiece and through at least one of the plurality of projections of the second workpiece.
Abstract:
A step apparatus for a vehicle having a door and a rocker panel includes a step disposed at and in operable communication with the door, wherein the step has a retracted position in response to the door being closed and a deployed position in response to the door being at least partially open. The vehicle has a first ground clearance in response to the door being closed and the step retracted and a second ground clearance in response to the door being open and the step deployed. The first ground clearance, which is defined by the vehicle and is independent of the step apparatus, is equal to or greater than the second ground clearance.
Abstract:
A multi-part, self-drilling, self-tapping fastener with on board, internal chambered adhesive for, permanently connecting a plurality of parts at an overlaid joint thereof having access from one side. The fastener, that drills its own hole through the joint and taps its own threads for mechanically connecting the parts and subsequently extrudes the adhesive under pressure for optimized joint adhesive infiltration and bonding area for maximizing joint strength. The mechanical fastener holds the parts together eliminating the requirement for holding with auxiliary fixtures allowing the parts to be finished and painted during adhesive cure.
Abstract:
The method includes the steps of providing a first metal member and contacting the first metal member with a second metal member. A substantially cylindrical rotatable member is provided and is rotated while frictionally engaging it with the first metal member for locally heating and melting a portion of the first metal member, and penetrating the rotatable member through the first metal member. The rotatable member is rotated while frictionally engaging it with the second metal member for locally heating and melting a portion of the second metal member. A wire is fed through the axially extending passage and melted as it exits the axially extending passage. The resulting molten wire is mixed with the resulting molten metal of the first and second member, and solidified to form a joint.
Abstract:
A cover and extender unit for the bed of a truck bounded by a forward wall, opposing side walls and a rear tailgate mounted for movement between fixed upright and horizontal positions comprising a pivoting frame stowed in the bed having laterally spaced sides, a transversely extending gating panel, and a rigid top cover roofing the bed; the top cover is hinged at forward points to the sides so it can be turned upwardly from the aft end of the bed for bed access, side pivot construction connects the frame to the side walls of the bed near the aft end thereof allowing the unit to be turned 180 degrees rearward from the stowed and bed cover position to a horizontal position thereby to extend the bed beyond the extremity of the lowered tailgate with the cover now serving as the bed extension and the forward gating panel as a rear tailgate.
Abstract:
The present invention relates to a method and apparatus for limiting the contact force between a moving device and another object, using a parallel mechanism and torque limiters where the threshold force to activate the force limiting mechanism is not related to the configuration of the moving device or the location of the contact force relative to the activation point of the force limiting mechanism, and where the mechanism may be configured for one, two or three degrees of freedom. A counterbalance mechanism is also provided to counteract gravity load when the force limiting mechanism is configured for three degrees of freedom and responsive to contact forces including a vertical element. In particular, the invention relates to a method and apparatus for limiting the contact force between a moving robotic device and a contactable object.
Abstract:
Remotely engageable and releasable suction cups include a pliable body and an active material in operative communication with the pliable body and configured to create and/or eliminate a partial vacuum through the activation of stiffness or geometry changes in the active material. Suitable active materials include shape memory materials such as shape memory alloys, ferromagnetic shape memory alloys, and shape memory polymers (SMP). A second class of active materials include materials that exhibit a change in at least one attribute when subjected to an applied field but revert back to their original state upon removal of the applied field. Active materials in this category include piezoelectric materials, electroactive polymers (EAP), magnetorheological polymers, and the like.
Abstract:
A rivet configured to provide a strengthened rivet joint capable of acting as a load-bearing joint, such as in a vehicle, is provided. A method of joining a multiple member work-piece utilizing the rivet is also provided. The rivet includes a head portion and an annular body portion extending from the head portion. The body portion has an open end opposite the head portion. The head portion and the annular body portion define an interior cavity that opens at the open end. The annular body portion has an inner surface at the interior cavity and an outer surface opposite the interior cavity. The body portion has passages extending through the body portion from the inner surface to the outer surface, and grooves running along the outer surface intersecting with the passages.
Abstract:
A robotic system includes a robot adapted for moving a payload in proportional response to an input force from an operator, sensors adapted for measuring a predetermined set of operator input values, including the input force, and a controller. The controller determines a changing stiffness value of the operator using set of operator input values, and automatically adjusts a level of control sensitivity over the robot using the stiffness value. The input values include the input force, a muscle activation level of the operator, and a position of the operator. A method of controlling the robot includes measuring the operator input values using the plurality of sensors, processing the input values using the controller to thereby calculate the stiffness value, and automatically adjusting the level of control sensitivity over the robot using the stiffness value. A specific operator may be identified, with control sensitivity being adjusted based on the identity.
Abstract:
A method of joining workpieces includes rotating a friction stir rivet via a mandrel and driving the rivet into the workpieces causing frictional heating between the rivet and the workpieces and causing the materials of the workpieces to soften, thereby providing a fiction stirred displaceable path for the rivet to traverse, and driving the rivet along the displaceable path until the rivet mandrel pierces through the workpieces and a cap of the rivet is seated against the workpieces. Subsequent to seating the cap, further rotation of the mandrel is stopped and the workpieces are allowed to cool and harden. An axial load is then applied to the mandrel sufficient to provide mechanical loading between the rivet body and the workpieces. A resultant volume of displaced material from the workpieces is fixedly attached to the workpieces, thereby avoiding the creation of a potentially detachable slug of the displaced material.