Abstract:
Determining effect of changes in parameters may include, during a time interval, rotating from setting a first parameter to a first value for a first time period, to setting the first parameter to a second value for a second time period such that the time interval includes multiple first time periods with the first parameter set to the first value sequenced with multiple second time periods with the first parameter set to the second value; obtaining, for the time interval, a first set of ratings corresponding to the first time periods and a second set of ratings corresponding to the second time periods; averaging, for the time interval, the first set of ratings to a first average rating and the second set of ratings to a second average rating; and correlating the first average rating to the first value and the second average rating to the second value.
Abstract:
Extracting a common signal from multiple audio signals may include summing a first signal and a second signal to obtain a first+second signal; subtracting the second signal from the first signal to obtain a first−second signal; transforming the first+second signal and the first−second signal to frequency domain representations; calculating absolute value of the frequency domain representations of the first+second signal and the first−second signal; subtracting the absolute value of the frequency domain representation of the first−second signal from the absolute value of the frequency domain representation of the first+second signal to obtain a difference signal; multiplying the difference signal by the frequency domain representation of the first+second signal to obtain a product signal; dividing the product signal by the absolute value of the frequency domain representation of the first+second signal to obtain a frequency domain representation of the common signal; and transforming the frequency domain representation to the common signal.
Abstract:
A method for a machine or group of machines to watermark an audio signal includes receiving an audio signal and a watermark signal including multiple symbols, and inserting at least some of the multiple symbols in multiple spectral channels of the audio signal, each spectral channel corresponding to a different frequency range. Optimization of the design incorporates minimizing the human auditory system perceiving the watermark channels by taking into account perceptual time-frequency masking, pattern detection of watermarking messages, the statistics of worst case program content such as speech, and speech-like programs.
Abstract:
A method for a machine or group of machines to watermark speech audio transmissions includes receiving a speech audio signal, receiving a watermark signal including a message of multiple bits, each bit having one of two values, each value represented by one of two symbols, each of the symbols corresponding to a respective audio segment, and at a time t1, transmitting a first transmission including at least some of the multiple bits in multiple spectral channels of the speech audio signal, each spectral channel corresponding to a different frequency range, wherein a first one of the multiple spectral channels carries a first bit from the multiple bits while at the same time a second one of the multiple spectral channels carries a second bit from the multiple bits different from the first bit.
Abstract:
Optimizing parameters includes, during a time interval, rotating from setting a first parameter to a first value for a first time period, to setting the first parameter to a second value for a second time period such that the time interval includes multiple first time periods in which the first parameter is set to the first value sequenced with multiple second time periods in which the first parameter is set to the second value; obtaining, for the time interval, a first set of ratings corresponding to the first time periods and a second set of ratings corresponding to the second time periods; averaging, for the time interval, the first set of ratings to a first average rating and the second set of ratings to a second average rating; and correlating the first average rating to the first value and the second average rating to the second value.
Abstract:
Optimizing parameters includes, during a time interval, rotating from setting a first parameter to a first value for a first time period, to setting the first parameter to a second value for a second time period such that the time interval includes multiple first time periods in which the first parameter is set to the first value sequenced with multiple second time periods in which the first parameter is set to the second value; obtaining, for the time interval, a first set of ratings corresponding to the first time periods and a second set of ratings corresponding to the second time periods; averaging, for the time interval, the first set of ratings to a first average rating and the second set of ratings to a second average rating; and correlating the first average rating to the first value and the second average rating to the second value.