BIOMIMETIC SENSING PLATFORM UNIT
    21.
    发明申请

    公开(公告)号:US20200232970A1

    公开(公告)日:2020-07-23

    申请号:US16486583

    申请日:2018-02-21

    Abstract: The present invention provides a vapor-permeable flexible sensing platform unit comprising: a first porous membrane, wherein said membrane is substantially flexible and hydrophobic; and a volatile organic compounds (VOCs) sensor disposed on said membrane, the VOCs sensor comprising an electrode array and a conducting polymer porous film being in electric contact with said electrode array, wherein the VOCs sensor is insensitive to lateral strain. Further provided are a method of preparation of said platform unit and a lift-off, float-on (LOFO) method for the preparation of protonically doped polyaniline (PANI) thin films.

    Detection of genetic sequences using PNA probes and Isotachophoresis

    公开(公告)号:US10301669B2

    公开(公告)日:2019-05-28

    申请号:US15469724

    申请日:2017-03-27

    Abstract: A method for sequence-specifically detecting a nucleic acid molecule. The method requires: a) contacting in an absence of an electric field, a mixture of nucleic acid molecules with a base pairing hybridizing molecule (BPHM) having a sequence of interest in a first solution and obtaining a hybrid consisting the nucleic acid molecule and the BPHM; b) introducing the first solution from step (a) into an ITP system, the ITP system comprises a second solution of high effective mobility leading electrolyte (LE) ions and a third solution of low effective mobility trailing electrolyte (TE); and c) applying the electric field across the second solution and the third solution. The hybrid focus at the sharp LE-TE interface in the ITP system. The TE has a higher mobility than the BPHM and the TE has a lower mobility than the hybrid. Sequence-specifically the detecting nucleic acid molecule by a signal from a label.

    Audio-based caricature exaggeration

    公开(公告)号:US10147217B2

    公开(公告)日:2018-12-04

    申请号:US15729217

    申请日:2017-10-10

    Abstract: A method that uses at least one hardware processor for receiving a three-dimensional model of an object, receiving an audio sequence embodied as a digital file that comprises a musical composition, generating a video frame sequence, and synthesizing the audio sequence and the video frame sequence into an audiovisual clip. The three-dimensional model is embodied as a digital file that comprises a representation of the object. The generating step comprises computing a caricature of the object by applying a computerized caricaturization algorithm to the three-dimensional model. The computing has scaling gradient fields of surface coordinates of the three-dimensional model by a function of a Gaussian curvature of the surface, and finding a regular surface whose gradient fields fit the scaled gradient fields. The computing is with a different exaggeration factor for each of multiple ones of the video frames, and the different exaggeration factor is based on one or more parameters of the musical composition of the audio sequence.

    Morphing aircraft skin with embedded viscous peeling network

    公开(公告)号:US11834170B2

    公开(公告)日:2023-12-05

    申请号:US17422539

    申请日:2020-01-15

    CPC classification number: B64C3/48 B64C3/26 B64C2003/445

    Abstract: An airfoil surface skin, comprising a network of a solid material, embedded in a base of deformable solid material. Fluid pressure applied to the interface between the network and the surrounding embedding material, opens an internal network of channels by viscous peeling of the surrounding solid from the network. The network is offset from the centerline the surround material, such that pressure driven viscous flow through the narrow channels generates two types of deformation of the skin—an in-plane elongation and a curvature of the skin plane itself. The shape of the internal solid core element and its material, and the material of the encompassing solid are chosen to achieve a desired integral structural rigidity. The injected fluid pressure determines the extent of extension and bending. Use of this skin enables shape amending airfoils having reduced drag compared with similar airfoils having conventional flap mechanisms.

    Liquid desiccant vapor separation system

    公开(公告)号:US11525246B2

    公开(公告)日:2022-12-13

    申请号:US17332546

    申请日:2021-05-27

    Abstract: A system for extracting water from the atmosphere is disclosed. The system has a vapor absorber vessel, an absorption cycle pump, a flash drum vapor desorber, a vapor condenser, an output conduit, and a heat exchanger. The vessel has an atmospheric air inlet and outlet ports, at least one liquid desiccant inlet port, at least two liquid desiccant outlet ports, and a surface on which the liquid desiccant flows between the at least one liquid desiccant inlet port and the at least two liquid desiccant outlet ports. The pump is adapted to circulate a first portion of the liquid desiccant from a first of the outlet ports to the at least one inlet port. The desorber is adapted to receive a second portion of the liquid desiccant from a second of the outlet ports, after passage through an expansion valve, the desorber incorporates a heat exchanger for supplying heat to liquid desiccant therein. The condenser receives desorbed vapor from the desorber, the condenser incorporates condensation surfaces adapted to be cooled to a temperature of less than 20° C., for enabling the condensing of the desorbed vapor to water. The output conduit collects water condensed in the condenser. The heat exchanger is located such that it receives desorbed heated liquid desiccant from the desorber and transfers part of its sensible heat to vapor-charged liquid desiccant passing from the vessel to the desorber.

    MORPHING AIRCRAFT SKIN WITH EMBEDDED VISCOUS PEELING NETWORK

    公开(公告)号:US20220097821A1

    公开(公告)日:2022-03-31

    申请号:US17422539

    申请日:2020-01-15

    Abstract: An airfoil surface skin, comprising a network of a solid material, embedded in a base of deformable solid material. Fluid pressure applied to the interface between the network and the surrounding embedding material, opens an internal network of channels by viscous peeling of the surrounding solid from the network. The network is offset from the centerline the surround material, such that pressure driven viscous flow through the narrow channels generates two types of deformation of the skin—an in-plane elongation and a curvature of the skin plane itself. The shape of the internal solid core element and its material, and the material of the encompassing solid are chosen to achieve a desired integral structural rigidity. The injected fluid pressure determines the extent of extension and bending. Use of this skin enables shape amending airfoils having reduced drag compared with similar airfoils having conventional flap mechanisms

    LIQUID DESICCANT VAPOR SEPARATION SYSTEM

    公开(公告)号:US20210285190A1

    公开(公告)日:2021-09-16

    申请号:US17332546

    申请日:2021-05-27

    Abstract: A system for extracting water from the atmosphere is disclosed. The system has a vapor absorber vessel, an absorption cycle pump, a flash drum vapor desorber, a vapor condenser, an output conduit, and a heat exchanger. The vessel has an atmospheric air inlet and outlet ports, at least one liquid desiccant inlet port, at least two liquid desiccant outlet ports, and a surface on which the liquid desiccant flows between the at least one liquid desiccant inlet port and the at least two liquid desiccant outlet ports. The pump is adapted to circulate a first portion of the liquid desiccant from a first of the outlet ports to the at least one inlet port. The desorber is adapted to receive a second portion of the liquid desiccant from a second of the outlet ports, after passage through an expansion valve, the desorber incorporates a heat exchanger for supplying heat to liquid desiccant therein. The condenser receives desorbed vapor from the desorber, the condenser incorporates condensation surfaces adapted to be cooled to a temperature of less than 20° C., for enabling the condensing of the desorbed vapor to water. The output conduit collects water condensed in the condenser. The heat exchanger is located such that it receives desorbed heated liquid desiccant from the desorber and transfers part of its sensible heat to vapor-charged liquid desiccant passing from the vessel to the desorber.

Patent Agency Ranking